

Katalog

der CNC-Steuerungen Num Power 1020/1040/1050/1060/1080

und der Antriebe NUM DRIVE

Inhaltsverzeichnis

Einleitung	1
Das Unternehmen Num Katalogaufbau	
Die Num Power Produktpalette CNC-Steuerungskonfiguration	
Antriebskonfiguration	
CNC-Steuerungen	2
Übersicht	
Bestellnummern und verfügbare Optionen nach Produkten geordnet	
CNC-Steuerungen	3
Technische Daten	
Abmessungen und Hinweise für die Installation	
CNC-Steuerungen	4
Funktionsbeschreibungen Rosschreibung der Funktionen und deren Anwendung	
Beschreibung der Funktionen und deren Anwendung	
Motoren NUM DRIVE	5
Servomotoren BPH, BPG, BML und BHL Spindelmotoren AMS, IM und AMR	
Motorspindle	
Anschlüsse und Kabel für Motoren	
Antriebsverstärker NUM DRIVE	6
Modulare Antriebsverstärker MDLA und MDLU	
Antriebsverstärker MDLS und MBLD mit integriertem Netzteil Monoblock-Antriebsverstärker MNDA	
Zuordnung Motoren zu Antriebsverstärkern	7
Motorgeber	
Zuordnung Motoren zu Antriebsverstärkern	
Allgemeine Informationen	8
Index	
Num weltweit Vorschriften	

Num in der Automatisierung weltweit führend

Eine komplette Palette von
CNC-Steuerungen
und Antrieben,
kompetente Ingenieure für
Applikationen und technische
Unterstützung ganz in Ihrer Nähe,
eine weltweite Vertretung und
Zugehörigkeit zu Schneider Electric
machen Num zu Ihrem idealen Partner.

Die NUM SA wurde 1978 gegründet und gehört heute zum Bereich der Industrieautomation von Schneider Electric, weltweit führend in Stromverteilung und Industriekontrolle.

Forschung und Entwicklung, die Garantie der Zukunft

Mit 12% seines Umsatzes für Forschung und Entwicklung und über 120 Ingenieuren entwickelt NUM die Automatisierungen der Maschinen von morgen.

Ein weltweiter Kundendienst

Den Kunden, Herstellern oder Anwendern stehen eine komplette Palette von Dienstleistungen zur Verfügung: Beratung, Unterstützung, Applikationen, Wartung, Ausbildung usw.

Forschung, Entwicklung und Applikationen

Die Applikationsingenieure von NUM sind dank ihrer grossen Erfahrung und ihrer globalen Ansicht der Probleme sowie ihrer ständigen Verfügbarkeit in der Lage, optimale technische und wirtschaftliche Lösungen anzubieten.

Die Palette der Dienstleistungen reicht von der Beratung und Voruntersuchung für die Automatisierung von neuen Maschinen bis zur Entwicklung von massgeschneiderter Software und Lieferung von schlüsselfertigen Systemen einschliesslich der Herstellung von personalisierten Schaltschränken nach internationalen Normen.

Reparatur und Wartung

Der internationale Kundendienst sorgt für die Integrierung und Inbetriebnahme der Systeme, telefonische Beratung, Einsatz vorort, Analyse des Maschinenparks, vorausschauende und dauerhafte Kundenlösungen (Retrofit), Entwicklung der Produkte und Aktualisierung der Software.

Der Kundendienst ist immer auf dem neuesten Stand der Produktentwicklung und verfügt über einen Lagerbestand an Material, um Ihren Anforderungen an Qualität und Lieferzeiten gerecht zu werden.

Schulung

Unsere Schulungszentren in der ganzen Welt Unsere Schulungszentren in Europa, Amerika und Asien nehmen jedes Jahr zahlreiche Schulungsteilnehmer auf. nehmen jedes Jahr zahlreiche Schulungsteilnehmer auf.

Diese Zentren besitzen perfekt ausgestattete Räume und unsere Ingenieure bieten eine hochqualifizierte Schulung, die auch Ihren spezifischen Anforderungen gerecht wird.

Eine CNC-Steuerung für jede Maschine

Mit der neuen Baureihe der kompakten CNC-Steuerungen Num Power mit erhöhten Leistungen bietet Num eine breite Palette von Lösungen zur Ausrüstung von neuen Maschinen oder zur Modernisierung von älteren Maschinen.

CNC Num Power 1020 und Num Power 1040

Eine ideale Lösung für alle Maschinen sowie Handhabungssysteme von 1 bis 6 Achsen in Preis und Leistung.

Die intuitiven CNC-Steuerungen Num PowerT*plus* und Num Power M*plus*

Basierend auf der CNC-Steuerung Num Power 1040 vereinen diese CNC-Steuerungen die Flexibilität des konventionellen Drehens und Fräsens mit Handrädern und die Präzision und Produktivität von CNC-Maschinen.

CNC Num Power1050

Die kompakte mit der Antriebsschnittstelle DISC NT ausgerüstete CNC-Steuerung kann 16 Achsen verwalten und ist besonders für Maschinen mit hoher Leistung, Geschwindigkeit und Präzision geeignet.

CNC Num Power 1060 und 1080

Dank einer neuen, noch leistungsfähigeren Technologie sind sie besonders zur Steuerung von komplexen Maschinen mit bis zu 32 Achsen geeignet.

Da alle CNC-Steuerungen der Baureihe Num Power 1000 die gleiche Basissoftware besitzen, sind Teileprogramme, Bearbeitungszyklen und SPS-Programme aufwärtskompatibel.

Alle Möglichkeiten zur Optimierung Ihrer Applikationen

Bedienung

Die CNC-Steuerungen lassen sich mit mehreren Bedienfeldern und Maschinenbedienfeldern kombinieren. Zur Auswahl stehen sowohl passive Bedienfelder, sowie aktive Bedienfelder auf PC-Basis.

Eine breite Palette von erprobten Tools

Zahlreiche Tools sind in der CNC integriert oder sind als PC-Anwendungen verfügbar:

- Für die Integrierung und die Optimierung der Systeme an den Maschinen: Ball-Bar, PLCTool und SETTool;
- Für die Ausführung von komplexen Sonderapplikationen: DYNOPS (dynamische Echtzeitoperatoren), C-Sprache;
- Für die Personalisierung der CNC-Steuerungen und die Anpassung an die Applikation: MMITool, PC Tool Kit, PC-Kommunikation.
- Kommunikationsmittel f
 ür den Anschluss der CNC an Netzwerke.

Antriebe mit hoher Dynamik

Num bietet eine komplette Baureihe von Motoren.

Bürstenlose Servomotoren

Kompakte Hochleistungsmotoren mit hoher Dynamik von 0,4 Nm bis 160 Nm:

- Motoren BPH, für schnelle Werkzeugmaschinen + Roboter
- Motoren BPG, mit erhöhtem Massenträgheitsmoment
- Motoren BML, f
 ür kompakte Bauform.
- Motor BHL, für Maschinen, die sowohl eine hohe Drehzahl als auch ein hohes Drehmoment erfordern.

Spindelmotoren

Die Asynchronmotoren AMS, IM und AMR von 2,2 kW bis 55 kW, bieten eine ausgezeichnete Laufruhe bei niedriger Drehzahl, schnelles und präzises Positionieren und sind bestens für die Funktionen C-Achse und Spindelindexierung geeignet.

Motorspindle[®]

Die aktiven Teile des Motors sind direkt in der Spindel integriert, was eine erhöhte Steifigkeit der Maschine und eine höhere Laufruhe gewährleistet.

Präzise Ansteuerungen mit hoher Regelgüte

Ansteuerungen mit digitalem Sollwert

Sie gewährleisten eine hohe Steifigkeit und eine ausgezeichnete Dynamik sowie erhöhte Leistungen: reduzierter Schleppfehler, höhere Stabilität der Drehzahl und erhöhte Präzision.

Die Antriebsverstärker mit der neuen Architektur DISC NT sind für die CNC Num Power 1050 lieferbar und werden über einen Bus mit hohem Datendurchsatz an die CNC gekoppelt:

- Modulare Antriebsverstärker MDLU für Achsen und Spindeln
- Monoblock-Antriebsverstärker MBLD mit integriertem

Ansteuerungen mit analogem Sollwert

Die Motoren werden mit einem von der CNC erstellten Sollwert von +/- 10V angesteuert:

- Antriebsverstärker für eine Achse MNDA, für kleine Maschinen oder Zusatzachsen
- Modulare Achsantriebsverstärker MDLA
- Spindelantriebsverstärker MDLS mit integriertem Netzteil.

Kombinationen

- Es können Digital- und Analogkopplungen in einer Applikation kombiniert werden.
- Die Antriebsverstärker der Baureihe MBLD/MDLS können die Versorgung der modularen Antriebsverstärker gewährleisten.

Katalogaufbau

Dieser Katalog zeigt Ihnen die Palette der Num CNC-Steuerungen und NUM DRIVE Antriebe. Er hilft Ihnen bei bei der Auswahl und Konfiguration der Systeme für Ihre Maschinen. Die Übersicht des nebenstehenden Num-Angebotes gibt Ihnen einen ersten Überblick über die Kenndaten und die wichtigsten Funktionen der einzelnen CNC-Steuerungen.

In den nachfolgenden Kapiteln finden Sie alle erforderlichen Informationen zur Produktauswahl.

In den Kapiteln 2, 3 und 4 finden Sie die CNC-Steuerungen:

- Das Kapitel 2 "Gesamtübersicht" definiert die Bestellnummern und die Produkte mit Kommentaren zu den Funktionen je nach CNC-Steuerung.
- Das Kapitel 3 "Technische Daten" beschreibt die Hardware, sowie die Bedingungen für Installation und Anwendung der verschiedenen Komponenten der Produkte.
- Das Kapitel 4 "Funktionsbeschreibungen" beinhaltet den Aufbau und die Betriebsarten der CNC-Steuerungen nach Funktionen zusammengefasst (Achsen, SPS, Teileprogrammierung, Software für Integration und Personalisierung, Kommunikation), um die Suche der Informationen zu erleichtern.

In den Kapiteln 5, 6 und 7 finden Sie die Antriebe:

- Das Kapitel 5 beschreibt die Servo- und Spindelmotoren der Baureihe NUM DRIVE: Anwendungsbereiche, Bestellnummerschlüssel, Kenn- und Leistungsdaten, Abmessungen, Anschlüsse und die entsprechenden Kabel.
- Das Kapitel 6 beschreibt die Baureihe der Antriebsverstärker: Kenndaten und Funktionen, Bestellnummerschlüssel, Hilfsmittel für die Inbetriebnahme und Abmessungen;
- Das Kapitel 7 dient zur Wahl der Geber und enthält die Zuordnungstabellen für Motoren und Antriebsverstärker.

Das Stichwortverzeichnis in Kapitel 8 ermöglicht ein schnelles Auffinden der Produkte und Funktionen.

Die Num Produktpalette

CNC-Steuerungen Motoren Antriebsverstärker

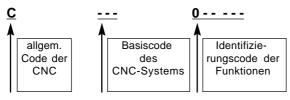
Bezeichnung		Kompak	te CNC Num	Power	
	1020	1040*	1050	1060	1080*
Achsen (1) Anzahl Achsen + Spindeln + Handräder + Messsysteme Achsgruppen / -Kanäle Achsen Spindeln Handräder	$2 \rightarrow 5$ 1 $2 \rightarrow 4$ $0 \rightarrow 1$ $0 \rightarrow 1$	$ 1 \rightarrow 6 $ $ 1 \rightarrow 4 $ $ 1 \rightarrow 6 $ $ 0 \rightarrow 2 $ $ 0 \rightarrow 3 $	$2 \rightarrow 16$ $1 \rightarrow 8$ $1 \rightarrow 16$ $0 \rightarrow 4$ $0 \rightarrow 3$	$2 \rightarrow 12$ $1 \rightarrow 3$ $2 \rightarrow 8$ $0 \rightarrow 3$ $0 \rightarrow 3$	$2 \rightarrow 32$ $1 \rightarrow 8$ $2 \rightarrow 32$ $0 \rightarrow 4$ $0 \rightarrow 4$
 SPS Digitale Ein-/Ausgänge Digitale Ein-/Ausgänge (W) Analoge Ein-/Ausgänge 	→ 112 E/A → 112 E/A 2 E/1 A	→ 256 E/A → 384 E/A 2 E/1 A	→ 768 E/A - 2 E/1 A	→ 336 E/A → 512 E/A 2 E/1 A	→ 1024 E/A → 1024 E/A 2 E/1 A
 Bedienfelder PC-Bedienfeld (FTP41) Kompaktbedienfeld (MP10, CP10) Bedienfeld mit CRT- oder TFT-Flachbildschirm (MP20, CP20, CP30, FS20+KBD30) Tragbares Bedienfeld (POP) Maschinenbedienfeld (MP01, MP02) Bedienfelder Mplus /Tplus 	• • • • • • • • • • • • • • • • • • •		0 0 0 0	• • • • • • • • • • • • • • • • • • •	0 0 0 0
KommunikationSerielle SchnittstellenNetze Uni-Telway, Fipway	2 → 3 O	2 → 3 •••	3 •>	3 •	3 O
Antriebe mit analoger Schnittstelle Achsen Modularer Antriebsverstärker MDLA Antriebsverstärker für Einzel-Achsen MNDA Motoren BPH, BPG, BML, BHL Spindeln Antriebsverstärker MDLS mit integriertem Netzteil Motoren AMS, IM, AMR, Motorspindle)))	• • • • • • • • • • • • • • • • • • •	O(2) - O(2) O(2) O	• • • • • • • • • • • • • • • • • • •	0 0 0
Antriebe mit digitaler Schnittstelle DISC NT Achsen Modularer Antriebsverstärker MDLU Motoren BPH, BPG, BML, BHL Spindeln Modularer Antriebsverstärker MDLU Antriebsverstärker MBLD mit integriertem Netzteil Motoren AMS, IM, AMR, Motorspindle	- - - -	- - - -	• • • • • • • • • • • • • • • • • • •	- - - -	- - - -

^{*} Die Num Power 1040 und 1080 können in zwei unterschiedlichen Plattformen geliefert werden: Optima und Ultra. Die Plattform Ultra dient zur globalen Leistungssteigerung des Systems.

⁽¹⁾ Siehe detaillierte Aufstellung auf Seite 2/3.

⁽²⁾ nur in Verbindung mit den digitalen Antriebsverstärkern DISC NT.

Grundausführung


O option

nicht verfügbar

CNC-Steuerungskonfiguration

Struktur der Bestellnummern

Die Bestellnummer der CNC-Steuerungen besteht aus zehn Elementen:

Beispiele:

 C
 079
 000 053

 CNC Num Power 1040 GP
 Bedienfeld CP30

 C
 038
 000 196

 CNC Num Power 1050
 Konfiguration Drehen

 C
 086
 000 250

 CN Num Power 1060M
 Dynamische Operatoren

Die für alle CNC-Steuerungen gültigen gemeinsamen Tools und Baugruppen sind durch einen einzigen Code (999) dem Funktionscode zugeordnet:

Beispiele:

<u>C</u> <u>999</u> <u>080 080</u> Schnittstellenmodul mit 32 Eingängen.

C 999 182 091

PCTool kit.

Verfügbare Funktionen der einzelnen Produkte

In der Gesamtübersicht des Kapitels 2 ist jede verfügbare Funktion für die verschiedenen CNC in den Spalten horizontal wie folgt codiert:

- Diese Funktion ist in der Basisausführung der CNC oder der Technologie enthalten
- O Option
- Diese Option ist f
 ür dieses Produkt nicht verf
 ügbar.

Wahl einer CNC

Um die für Ihre Maschine geeignete CNC-Steuerung zu wählen, empfehlen wir Ihnen, wie folgt vorzugehen.

- 1 Bestimmung der Basis-CNC, die unter den Kompaktsystemen (Num Power 1020, 1040,1050, 1060 und 1080) nach folgenden Kriterien auszuwählen ist:
 - Anzahl der Achsen und der erforderlichen Ein-/ Ausgänge;
 - digitale oder analoge Schnittstelle;
 - eventuell entsprechend der PC-Funktion.
- 2 Wahl des Bedienfeldes:
 - CNC-Bedienfelder: Kompaktbedienfeld, CNC-Bedienfeld oder tragbares Bedienfeld;
 - PC-Bedienfeld.
- 3 Gewünschte Hardware- und Software-Funktionen:
 - Steuerung der CNC- und der SPS-Achsen sowie der Spindel;
 - RAM-Speicher für Teile- und SPS-Programme;
 - Software-Optionen.
- 4 Software für Personalisierung und Integration (interne Module oder PC-Software).

Wahl der Motoren

Servomotoren

1 - Die Servomotoren entsprechend der erforderlichen Kenndaten wählen.

Mechanische Belastungen	Motoren	Drehmoment (Nm)	Drehzahl (min ⁻¹)
Normalausführung	BPH	0,4 bis 100	2 000 bis 8 000
Mit erhöhtem Massenträgheitsmoment	BPG	2,5 bis 36	2 000 bis 3 000
Kompakte Bauform	BML	1,1 bis 2,8	3 000 und 6 000
Maschine, die hohe Drehzahl und hohes Drehmoment erfordert	BHL	85 bis 160	2000 bis 3000

- 2 In jedem Fall prüfen, dass das erforderliche Drehmoment und die Höchstdrehzahl gewährleistet sind.
- 3 Die Ausführung bestimmen (Bremse, Wellenabgang...).

Spindelmotoren

- 1 Nehmen Sie die Tabellen zu Hilfe, die die Leistung abhängig von der Drehzahl angeben.
- 2 Die Ausführung bestimmen (Bremse, Wellenabgang...).

Wahl der Antriebsverstärker

Antriebsverstärker mit digitaler Schnittstelle DISC NT und hoher Performance (Num Power 1050)

MDLU für Servo- und Spindelmotoren.

Modular aufgebauter Antriebsverstärker.

Einspeisung über separates Netzteil oder MBLD/MDLS möglich.

MBLD für Servo- und Spindelmotoren.

Antriebsverstärker mit integriertem Netzteil optional mit Netzrückspeisung.

Sie können die Versorgung der modularen Antriebsverstärker gewährleisten.

Eine Kombination mit den Antriebsverstärkern mit analogem Sollwert MDLA ist möglich.

Digitale Antriebsverstärker mit analoger Schnittstelle

MNDA Monoblock-Antriebsverstärker an Einzelachsen für kleine Servomotoren und Maschinen mit kleiner Achsenzahl.

MDLA Modulare Achsantriebsverstärker

Sie können über den Spindelantriebsverstärker MBLD oder MDLS versorgt werden.

Eine Kombination mit den digitalen Antriebsverstärkern MDLU ist möglich.

MDLS für Spindelmotoren AMS und AMR

Antriebsverstärker mit integriertem Netzteil optional mit Netzrückspeisung.

Sie können die Versorgung der modularen Antriebsverstärker gewährleisten.

- 1 Siehe Tabelle auf Seite 7 betreffs der möglichen Kombinationen zwischen CNC-Steuerungen, Antriebsverstärkern, Motoren und Motorgebern.
- 2 Die Typen der Antriebsverstärker definieren (Kapitel 6).
- 3 Die Dimensionierung der Motoren in den Zuweisungstabellen für Motoren und Antriebsverstärker (Kapitel 7) so wählen, dass das verfügbare Überlastmoment berücksichtigt wird.
- 4 Eventuell die Optionen der Antriebsverstärker bestimmen.

Ergänzungen

- 1 Für jeden Typ von Antriebsverstärker den Abschnitt "Kontrolle" beachten, um nichts zu vergessen (Kapitel 6):
 - Stromversorgung, Bremswiderstand für die modularen Antriebsverstärker
 - · Netzfilter, Filter.
- 2 Die Anschlüsse und Kabel für die Motoren wählen (Kapitel 5).

Gesamtübersicht

Inhaltsverzeichnis

	Seite
Produkte und Technologien	
Die Technologien Zusammensetzung der Grundausführung und maximale Erweiterungen Achsen, Spindeln,	2/2
Handräder und Messsysteme	2/3
Zusammensetzung der Grundausführung und maximale Erweiterungen des RAM-Speichers	2/4
Basis-CNC	
Kompakte CNC-Steuerungen Num Power 1020, 1040, 1050, 1060 und 1080 Werkstattorientierte Steuerungen Num M <i>plus</i> und Num T <i>plus</i>	2/6 2/7
Bedienfelder	
CNC-Bedienfelder, tragbares Bedienfeld	2/8
Verbindungskabel für CNC-Bedienfelder	2/9
PC-Bedienfeld	2/9
Sprachauswahl für CNC-Steuerungen Maschinenbedienfeld	2/9 2/10
Lichtwellenleiter (LWL) für Maschinenbedienfeld und E/A-Module	2/10
Achsen, Spindeln und Handräder	
CNC-Achsen, SPS-Achsen, Messsystemeingänge und Spindelansteuerung	2/11
Anschlusskabel der Antriebsverstärker DISC NT an die CNC Num Power 1050	2/11
Zubehör	2/11
Achs- und Spindelfunktionen	2/11
Werkzeugverwaltung	
Werkzeugkorrekturen	2/12
SPS-Funktionen	
Integrierte E/A-Karten und Verbindungskabel	2/13
Module zur E/A-Verdrahtung	2/13
Dezentrale E/A-Module und Klemmleisten Programmierung der SPS	2/13 2/13
Programmierung der SPS	2/13
Technologien	
Drehen Fri and	2/14
Fräsen Technologiefreie Baureihe	2/16 2/19
Rundschleifen	2/20
Flachschleifen	2/21
Holz-, Glas- und Marmorbearbeitung	2/22
Werkstattorientierte CNC-Steuerungen Num Mplus und Num Tplus	2/24
Kommunikation	
Serielle Schnittstellen und Anschluss an Netzwerke Diskettenlaufwerk	2/26 2/26
Software für Integration und Personalisierung	
Residente Software und PC-Software tools	2/26
Technische Handbücher	
Lieferung von Handbüchern	2/29

Gesamtübersicht

Die Technologien

Die Angebotspalette der CNC-Steuerungen Num Power ist auf zwei Arten gegliedert.

Die CNC Num Power 1020, 1040, 1060 und 1080 sind nach "Technologien" gegliedert, die für jedes System eine Reihe von Basisfunktionen bestimmen.

- In der Bezeichnung der CNC ist die Technologie durch einen oder zwei Buchstaben dargestellt.
 Zum Beispiel: Num Power 1040GP, Num Power 1080M, Num Tplus.
- In der Bestellnummer der Systeme C--- bezeichnen die drei ersten Ziffern die Einheit CNC/Technologie.
 Zum Beispiel: C079 (Num Power 1040GP), C082 (Num Power 1080M), C059 (Num Tplus).

Die CNC Num Power 1050 hat nur eine Grundausführung.

Die Personalisierung der "Technologie" erfolgt durch Wahl der Konfiguration Drehen oder Fräsen und der für die Applikation erforderlichen Zusatzfunktionen.

- Die Konfiguration Drehen ermöglicht die Steuerung von Drehmaschinen, Drehzentren und Rundschleifmaschinen.
- Die Konfiguration Fräsen dient zur Steuerung von Fräsmaschinen, Bohrmaschinen, Bearbeitungszentren, Schneidmaschinen usw.
 Zum Beispiel: <u>C038</u> + Option <u>000195</u> (Num Power 1050 mit der Konfiguration Fräsen).

Beschre	ibung	Bestellnummern						
Technol	ogien	Kompakte CNC Num Power						
		1020	1040	1050	1060	1080		
Т	Drehen	C017	C077	-	C610	C810		
Tplus	Werkstattorientierte Steuerung für Drehen	-	C059	-	-	-		
М	Fräsen	C015	C075	-	C086	C082		
Mplus	Werkstattorientierte Steuerung für Fräsen	-	C058	-	-	-		
GP	Personalisierbare Baureihe	-	C079	-	-	-		
GC	Rundschleifen	C018	C078	-	C650	C850		
GS	Flachschleifen	C019	C074	-	C660	C860		
W	Holz-, Glas- und Marmorbearbeitung	C016	C076	-	C088	C084		
Grundau	sführung Fräsen/Drehen	-	-	C038	-	-		

Gesamtübersicht

Zusammensetzung der Grundausführung und maximale Erweiterungen Achsen, Spindeln, Handräder und Messsysteme

Kompakte CNC-Steuerungen Num Power 1020, 1040, 1060 und 1080 mit analoger Schnittstelle

		CNC-Achsen	Analoge Spindeln mit Messsystem	SPS-Achsen	Eingänge für Handräder	Anzahl Spindelachsen+ Handräder+ Messsystem	Achsgruppen/ -Kanäle
		Basis/maximal	Basis/maximal	Basis/maximal	Basis/maximal	Maximal	Basis/maximal
Num Power 1020	T M GC GS W	2/3 3/4 2/4 3/4 3/4	1 0/1 0/1 0/1 0/1	0 0 0 0	0/1 0/1 0/2 0/1 0/1	4 5 4 4 4	1 1 1 1
Num Power 1040	T Tplus M Mplus GP GC GS	2/4 2/3 3/5 3/4 (2) 1/6 2/4 3/5 3/6	1/2 1/2 (1) 0/2 0/1 (2) 0 0/2 0/2 0/2	0/3 0/1 0/3 0/2 (2) 0/5 0/4 0/3 0/3	0/3 2 0/3 1/3 (2) 0 0/3 0/3	6 6 6 6 6	1/2 1 1/2 1 1/4 1/2 1/2
Num Power 1060 (3)	T M GC GS W	2/7 3/8 3/8 3/8 3/8	1/3 0/3 0/3 0/3 0/3	0/6 0/5 0/6 0/6 0/5	0/3 0/3 0/3 0/3 0/3	12 12 12 12 12	1/3 1/3 1/3 1/3 1/3
Num Power 1080	T M GC GS W	2/32 3/32 3/32 3/32 3/32	1/4 0/4 0/4 0/4 0/4	0/28 0/28 0/28 0/28 0/28	0/4 (4) 0/4 (4) 0/4 (4) 0/4 (4) 0/4 (4)	32 32 32 32 32	1/8 1/8 1/8 1/8 1/8

⁽¹⁾ Wenn Option Full ISO (Option 000 593) vorhanden

Kompakte CNC-Steuerungen Num Power 1050 mit digital Sollwert

Num Power 1050	Maximal
Grundausführung NUM 1050 Die Grundausführung umfasst den digitalen Antriebsbus DISC NT zur Steuerung von bis zu sechzehn digitalen Antriebsverstärkern, die auf CNC-Achsen, SPS-Achsen und digitalen Spindeln aufgeteilt werden. Die Achsen, Spindeln und Messsystemeingänge mit analogem Sollwert ± 10 V sind optional.	
Grenzen der Hardware - Maximale Anzahl der digitalen Antriebsmodule (CNC-Achsen + SPS-Achsen und Spindeln) - Maximale Anzahl der analogen Achsen (CNC-Achsen + SPS-Achsen und Spindeln) + zusätzliche Messsysteme	≤ 16 ≤ 5
Grenzen der Software - Maximale Anzahl der CNC-Achsen (digital + analog) - Maximale Anzahl der SPS-Achsen (digital + analog) - Maximale Anzahl der Spindeln (digital + analog) - Maximale Anzahl der CNC-Achsen + SPS-Achsen + Spindeln (digital + analog) - Maximale Anzahl der CNC-Achsen + SPS-Achsen + Spindeln + Eingänge für Handräder + zusätzliche Messeingänge - Achsgruppen/Kanäle	≤ 16 ≤ 16 ≤ 4 ≤ 16 ≤ 16 1 - 8

⁽²⁾ In der Basisausführung wahlweise: 3 Messsystemeingänge für Handräder oder 1 umschaltbarer Eingang für Handrad (siehe Detail auf Seite 2/24).

⁽³⁾ Gesamtzahl Achsen + Spindeln: 8

⁽⁴⁾ Das 4. Handrad ist nur bei maximaler Konfiguration verfügbar und vorausgesetzt, dass alle Steckplätze verwendet wurden.

Gesamtübersicht

Zusammensetzung der Grundausführung und maximale Erweiterung des **RAM-Speichers**

Der gepufferte RAM-Speicher enthält alle Betriebsprogramme der CNC-Steuerung und speichert sie beim Abschalten des Systems.

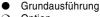
Dieser Speicher ist in vier Bereiche für die verschiedenen Applikationen unterteilt:

- Bereich Qa: SPS-Programm
 Bereich Qp: Teileprogramm und residente Makrobefehle
- Bereich Qm: Quellprogramm MMI • Bereich Qc: MMI-Programm in C.

Weitere Einzelheiten über die Besonderheiten dieser Speicherbereiche finden Sie im Kapitel Funktionsbeschreibungen, SPS-Funktion (Seite 4/10), Teileprogramm (Seite 4/20) und MMITool (Seite 4/28).

Basis-Speicherausbau

Um eine korrekte Funktion des Systems zu gewährleisten, wird die Grundausführung der CNC mit einer je nach Technologie variablen Speichergrösse geliefert.


System	Speichergrösse in kB					
	Qa	Qp	Qm	Qc		
Num Power 1020, 1040, 1060, 1080						
Т	64	32	128	64		
Tplus	64	128	32	31 x 32 kB		
М	64	32	128	64		
Mplus	64	128	32	31 x 32 kB		
GP	64	32	128	64		
GC	64	64	128	64		
GS	64	64	128	64		
w	64	128	128	64		
Num Power 1050						
Grundausführung Fräsen/Drehen	64	128	0	0		

Speichererweiterung

Die Speicher können durch Module mit je 64 kB (Qa) oder je 32 kB (Qp, Qm und Qc) erweitert werden.

Je nach Bedarf der Applikation kann man eine Speichererweiterung zusätzlich zur Grundausführung bestellen, indem man die gewünschte Anzahl der Module angibt.

Bezeichnung	Bestell-		Kompakte CNC Num Power			
	nummern	1020	1040	1050	1060	1080
Zusätzliche Speichermodule						
32 kB für Teileprogramm (Qp)	000 341	0	О	0	О	О
64 kB für SPS-Programm (Qa)	000 347	0	О	0	О	O
32 kB für MMI-Quellprogramm (Qm)	000 377	0	0	0	О	О
32 kB für MMI-Programm in C (Qc)	000 378	0	0	0	О	О

Option

nicht verfügbar

Gesamtübersicht

Zusammensetzung der Grundausführung und maximale Erweiterung des RAM-Speichers

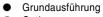
Optionsabhängiger Speicher

Bestimmte Software-Optionen erfordern zusätzlichen Speicher, der bei der Berechnung des Gesamtspeichers für deren Installation und Anwendung berücksichtigt werden muss.

Bezeichnung	Bestell	Erforderlicher Speicher in kB			
	nummern	Qa	Qp	Qm	Qc
PROCAM MILL/TURN (Num Power 1020/1040/1060/1080)	000 113		256		
PROCAM MILL (Num Power 1050)	000 238		256		
PROCAM TURN (Num Power 1050)	000 239		256		
PROCAM MULTITURN	000 133		512		
PROCAM MX	000 134		512		
Fräspaket Nr. 1	000 382		384		
Fräspaket Nr. 2	000 383		0		
Fräspaket Nr. 3	000 384		384		
Paket Holz Nr. 1	000 380	64			
Paket Holz Nr. 2	000 381	64	256		
Messzyklen T	000 590		32		
Messzyklen M	000 591		96		

Maximale Grösse des Gesamtspeichers

Die Gesamtsumme der verschiedenen Speicher (Basisspeicher + Optionsspeicher + Zusatzspeicher) muss unter dem für jede CNC angegebenen Grenzwert liegen.


System	Qa	Qp	Qm	Qc	Insgesamt
Num Power 1020	Qa	+ Qp	+ Qm	+ Qc	< 3500 Ko
Num Power 1040	Qa	+ Qp	+ Qm	+ Qc	< 3500 Ko
Num Power 1050	Qa	+ Qp	+ Qm	+ Qc	< 3500 Ko
Num Power 1060	Qa	+ Qp	+ Qm	+ Qc	< 3500 Ko
Num Power 1080	Qa	+ Qp	+ Qm	+ Qc	< 3500 Ko
Num M <i>plus</i> , Num T <i>plus</i>	Qa	+ Qp	+ Qm	+ Qc	< 3500 Ko

Gesamtübersicht

Basis-CNC Kompakte Num Power 1020/1040/1050/1060/1080

Die in der Basisversion verfügbaren Funktionen für jedes System finden Sie auf Seite 2/3.

Bezeichnung	Bestell-			Kompak	te CNC Nu	m Power		
	nummern	1020	1040	1040	1050	1060	1080	1080
			Optima	Ultra			Optima	Ultra
Die Plattformen Ultra dienen zur globalen Leistungssteigerung des Systems. Die Wahl des Systems hängt vom Typ des verwendeten Bedienfeldes ab: - die passiven CNC-Bedienfelder erfordern eine Karte zur Bedienfeldkommunikation - das aktive PC-Bedienfeld benötigt keine Karte zur Bedienfeldkommunikation. Der Coprozessor ist erforderlich, sobald die Option "dynamische Operatoren in C" (000 249) gefordert wird.								
Num Power 1020 und Num Power 1040 Optima Mit Karte zur Bedienfeldkommunikation Ohne Karte zur Bedienfeldkommunikation	000720 000620	0	0	-	- -	-	-	-
Num Power 1040 Ultra, Num Power 1050 (DISC NT) Num Power 1060 und Num Power 1080 Optima Mit Karte zur Bedienfeldkommunikation Mit Coprozessor Ohne Coprozessor Ohne Karte zur Bedienfeldkommunikation Mit Coprozessor Ohne Coprozessor	000 741 000 740 000 641 000 640	:))))))))))))	:
Num Power 1080 Ultra Mit Karte zur Bedienfeldkommunikation Mit Coprozessor Ohne Coprozessor Ohne Karte zur Bedienfeldkommunikation Mit Coprozessor Ohne Coprozessor	000 761 000 760 000 661 000 660)))
Erweiterungsmodul Modax für Num Power 1060 und 1080 Bei Verwendung von mehr als 6 Achskarten wird das System über das Modul Modax erweitert. Dies kann zusätzlich zu den Achskarten eine integrierte E/A-Karte aufnehmen. Anzahl der Modax-Module CNC mit 1 bis 6 Achskarten CNC mit 1 bis 12 Achskarten (maximal 8 Achsen) CNC mit 1 bis 16 Achskarten CNC mit 1 bis 27 Achskarten CNC mit 1 bis 32 Achskarten		- - - -				0 1 - -	0 1 1 2 3	0 1 1 2 3

Option

nicht verfügbar

Gesamtübersicht

Basis-CNC Kompakte Num Power 1020/1040/1050/1060/1080

Die in der Basisausführung verfügbaren Funktionen finden Sie auf den Seiten 2/3 und 2/4 und die Sonderfunktionen auf den Seiten 2/24 und 2/25.

Bezeichnung	Bestell-		Komp	akte CNC Nu	ım Power	
	nummern	1020	1040	1050	1060	1080
Werkstattorientierte CNC-Steuerungen Num M <i>plus</i> und Num T <i>plus</i>						
System mit Bedienfeldkommunikation	000720	-	О	-	-	-
umfasst die Tastatur und die spezifische Anwendungssoftware (siehe Seite 3/10, 4/20 und 4/26).						
Bildschirm						
MS20: 9"-Monochrom-Bildschirm	000184	-	О	-	-	-
CS20: 10"-Farbbildschirm	000185	-	О	-	-	-
CS30: 14"-Farbbildschirm Für den Betrieb mit der Option FULL ISO (000 593) ist der Bildschirm durch ein Bedienfeld mit CRT-Bildschirm CP30 oder mit LCD-Bildschirm FS20 in	000186	-	0	-	-	-
Verbindung mit der Tastatur KBD30 ergänzt.						

- Grundausführung
- Option (
- nicht verfügbar

Gesamtübersicht

CNC-Bedienfelder, Mobiles Bedienfeld

Die CNC Num Power 1020, 1040, 1050, 1060 und 1080 werden mit zwei Typen von Bedienfeldern angeboten: herkömmliches CNC-Bedienfeld, das in mehreren Ausführungen existiert, oder PC-Bedienfeld.

Eine detaillierte Beschreibung der Bedienfelder (Kenndaten und Abmessungen) finden Sie im Kapitel 3 Technische Daten.

Bezeichnung	Bestell-		Komp	akte CNC Ni	um Power		
	nummern	1020	1040	1050	1060	1080	
CNC-Bedienfelder Einsetzbar für die CNC's mit Karten zur Bedienfeldkommunikation.							
Passive CNC-Kompaktbedienfelder MP10: CNC-Bedienfeld, 9"-Monochrom-Bildschirm CP10: CNC-Bedienfeld, 10"-Farbbildschirm Verbindungskabel zur NC, maximal 10 m. PC-Tastatur QWERTY (Option)	000 264 000 269 000 248	0 0	0	0 0	0	0	(1) (1)
Passive CNC-Bedienfelder MP20: Bedienfeld mit 50 Tasten,	000 055	- -	0	0	0	0	(3)
9"-Monochrom-Bildschirm CP20: Bedienfeld mit 50 Tasten,	000253	-	0	0	0	0	(3)
10"-Farbbildschirm CP30: Bedienfeld mit QWERTY-Tastatur, 14"-Farbbildschirm	000053	-	O	Ο	0	О	(3)
Konfiguration mit mehreren Bedienfeldern Diese Funktion ist für die Bedienfelder MP20, CP20 und CP30 verfügbar. Es können maximal 3 zusätzliche Bedienfelder am Haupt-Bedienfeld angeschlossen werden. Zusätzliches Bedienfeld MP20 Zusätzliches Bedienfeld CP20 Zusätzliches Bedienfeld CP30 LCD-Bedienfeld: bitte bei uns anfragen	000359 000358 000353	- - -	0 0	O O O	0 0))	(1) (1) (1)
Konfiguration mit mehreren CNC Diese Funktion ist mit den Bedienfeldem MP20, CP20 und CP30 verfügbar. Ein Bedienfeld kann an maximal 4 CNC angeschlossen werden.	000.254		0	O	O	O	(1)
Multiplex-Modul Bedienfeld mit Flachbildschirm Bedienfeld in zwei separaten Elementen:	000354	-	0	O	O	J	(1)
FS20:TFT-Flachbildschirm10"4 KBD30: Industrielle CNC-Tastatur Qwerty Mit 2 m langem Verbindungskabel geliefert	000 484 000 485	- -))	0	0))	(3) (3)
Mobiles Bedienfeld POP Gewährleistet die Funktionen für Programmierung, Einrichten und Produktion.							
POP: mobiles Bedienfeld mit 6"-LCD-TFT. PC-Tastatur (Qwerty) (Option)	000246 000248))	0	0	O O	0	(1) (1)

(1) außer Num Mplus und Num Tplus

- Grundausführung
- O Option
- nicht verfügbar

⁽³⁾ Option bei Num Mplus und Num Tplus, wenn Option Full ISO (000 593) vorhanden

Gesamtübersicht

Kabel für CNC-Bedienfelder PC-Bedienfelder Landessprachen der Systeme

Eine detaillierte Beschreibung der Bedienfelder (Kenndaten und Abmessungen) finden Sie im Kapitel 3 Technische Daten.

Bezeichnung	Bestell-		Komp	akte CNC No	um Power		
	nummern	1020	1040	1050	1060	1080	
Verbindungskabel der Bedienfelder zur CNC Für Kompakt-Bedienfelder und Bedienfelder. Vorkonfektioniertes Kabel 5 m 10 m 15 m 20 m 30 m 40 m Konfektioniertes CNC-Kabel 1,5 m 5 m 10 m	081 054 081 055 081 056 081 057 081 058 081 059 081 157 081 154 081 155	0 0					
PC-Bedienfeld Für CNC ohne Karte zur Bedienfeldkommunikation bestehen sie aus zwei Elementen: PC und Tastatur. FTP41: Industrie-PC mit 10,4" TFT Lieferumfang: - Windows, verfügbar in französisch, englisch, deutsch, italienisch und spanisch (die gewünschte Landessprache bei der Bestellung angeben), - Softwarepaket BestNr. 082 500 Bedienfeld FTP41 mit Windows 98 Bedienfeld FTP41 mit Windows 2000 KBD-PC: Qwerty PC-Tastatur mit USB- Schnittstelle und 2 m Verbindungskabel.	000 480 000 490 000 482	0 0	0 0	O O O	0 0))	(1) (1) (1)
Landessprachen der CNC-Steuerungen Residente Sprachen: französisch, englisch, deutsch, italienisch, spanisch, schwedisch.		•	•	•	•	•	

(1) außer Num M*plus* und Num T*plus*

- Grundausführung
- Option Option
- nicht verfügbar

Gesamtübersicht

Maschinenbedienfelder Lichtwellenleiter

Eine detaillierte Beschreibung der Bedienfelder (Kenndaten und Abmessungen) finden Sie im Kapitel 3 Technische Daten.

Bezeichnung		Bestell-		Komp	akte CNC Nu	ım Power		
		nummern	1020	1040	1050	1060	1080	
MASCHINENBEDIENFELDER Sie sind über Lichtwellenleiter mit de Maximale Anzahl von Maschinenbedier * nur ein Maschinenbedienfeld für	ıfeldern		-	2*	2	2	2	(1)
Maschinenbedienfeld MP01 Gleiche Breite wie die Bedienfelde herkömmlichem Bildschirm: - Kompaktbedienfelder MP10 und Bedienfelder MP20, CP20 und MP01: personalisierbares Maschinen Elektronisches Handrad für Maschine	nd CP10 I CP30. bedienfeld	000 356 081 050	_	0	0	0	O O	(1)
E/A-Erweiterung für Bedienfeld MP0 ⁻ Verbindungskabel für 32 Eingänge	1 m 2 m	000 357 080 081 080 082	- - -	0 0 0	0 0	0 0	0 0	
Verbindungskabel für 24 Ausgänge	1 m 2 m	080 085 080 086	-	0	0	0	0	
Maschinenbedienfeld MP02 Gleiche Breite wie die Bedienfelder r - Bedienfeld FS20 - C-Bedienfeld PC FTP41.	mit Flachbildschirm:							(1)
MP02: personalisierbares Maschinent	pedienfeld	000486	-	О	О	0	О	
Elektronisches Handrad für Maschine	nbedienfeld MP02	081 021	-	О	О	0	О	
Lichtwellenleiter Sie dienen zum Anschluss in Elemente an die CNC: - Maschinenbedienfelder MP01 u - Bedienfelder Num Mplus un - Dezentrale E/A-Module	nd MP02							
Lichtwellenleiter	0,25 m	081 039	-	О	О	0	О	
	0,50 m	081 089	-	О	О	0	О	
	1 m	081 045	-	0	О	О	О	
	2 m	081 090	-	О	О	0	О	
	5 m	081 046	-	0	0	0	0	
	10 m	081 047	-	0	0	0	0	
	20 m 30 m	081 049 081 052	-	0	0	0	0	
	30 m 40 m		-	0	0	0	0	
Bereits bestellte Lichtwellenleiter	40111	081 053 097 007	-	0	0	0	0	
Anzugebende Bestellnummer, w Lichtwellenleiter vorher bestellt h		097 007	-	J	J	J	9	
Glasfaserverbindung nicht verwend Anzugebende Bestellnummer, w Lichtwellenleiter verwenden wolle	enn Sie keinen	000417	-	Ο	O	0	0	

(1) außer Num Mplus und Num Tplus

- Grundausführung
- O Option
- nicht verfügbar

Gesamtübersicht

Achsen, Spindeln und Handräder

Die Gesamtzahl der Achsen, Spindeln, Handräder und Messsysteme muß die maximal zulässige Anzahl für jedes System berücksichtigen (diese Werte finden Sie auf Seite 2/3).

Die Funktionen für Achsen und Spindeln umfassen immer die Steuerung und die Messsysteme.

Die werkstattorientierten CNC-Steuerungen Num Mplus und Num Tplus finden Sie auf Seite 2/24.

Bezeichnung	Bestell-		Komp	akte CNC N	um Power		
	nummern	1020	1040	1050	1060	1080	
CNC Num Power 1020/1040/1050/1060/1080							
Zusätzliche CNC-Achsen zur Grundausführung							
analog/Achsen (Seite 4/7)	000373	0	О	0	О	0	(11)
SPS-Achsen							
analog/SPS-Achsen (Seite 4/7)	000534	-	0	О	О	0	(11)
Zusätzliche Messsystemeingänge							
Messsystemeingang TTL5 V für Handrad	000 209	О	О	0	О	0	(2) (4) (11)
Handrad Mplus (000 309 oder 000 409) Zwingende und exklusive Wahl							
3 Messsystemeingange für Handrad M <i>plus</i>	000 309		О				
Umschaltbarer Messsystemeingang für Handrad M <i>plus</i>	000 409		О				
Zusätzlicher Messsystemeingang für Num Power 1040 GP	000237	=	О	-	-	=	
Spindelsteuerung ohne Messsystem							
Über einen analogen Ausgang der SPS (D/A-Wandler12 Bit) Zusätzlicher Analogausgang		•	•	•	•	•	
Analoger Ausgang D/A-Wandler 14 Bit	000 375	0	0	0	0	0	(11)
Maximale Anzahl		1	1	1	1	1	()
Steuerung einer analogen Spindel mit Messsystem							
1. Analoge Spindel (Seite 4/7)	000366	0	0	0	О	0	(2) (11)
In der Grundausführung bei T							
2. Analoge Spindel (Seite 4/7)	000367	-	0	0	0	0	(2) (5) (7)
3. Analoge Spindel (Seite 4/7)	000368	-	-	О	О	О	
4. Analoge Spindel (Seite 4/7)	000369	-	-	О	-	О	
CNC Num Power 1050 (DISC NT)							
Für jeden Typ die gewünschte Anzahl unter							
Berücksichtigung der Grenzwerte auf Seite 2/3 angeben.							
Digitale CNC-Achsen	000450	-	-	•	-	-	
Digitale SPS-Achsen	000451	-	-	•	-	-	
Digitale Spindel	000452	-	-	•	-	-	
Busanschlusskabel für Antriebsverstärker							
MDLU/MBLD (DISC NT) an die CNC Num Power 105				_			
0,5 m	081 500	-	-	0	-	-	
1 m 5 m	081 501 081 502	-	-	0	-	-	
5 III 10 m	081502	-		0		- -	
Zubehör	001000			9			
Achsanschlussmodule	080 089	0	0	0	0	0	
Elektronisches Handrad kompatibel mit Bedienfeld MP01	081 050	0	0	0	0	0	(2)
Elektronisches Handrad kompatibel mit Bedienfeld MP02	081 021	0	0	0	0	0	(2)
·							` ,

(2) außer Num Power 1040 G

(4) außer Num Tplus

(5) außer Num M*plus*

(7) möglich bei Num Tplus wenn Option Full ISO (000 593) vorhanden

(11) möglich bei Num M*plus* wenn *O*ption umschaltbares Handrad (000 409) vorhanden Grundausführung

O Option

nicht verfügbar

Gesamtübersicht

Achsen, Spindeln, Handräder Werkzeugverwaltung

Bezeichnung	Bestell-		Komp	akte CNC Nu	ım Power		
	nummern	1020	1040	1050	1060	1080	
Achsbezogene Software-Funktionen							
Anzahl der gleichzeitig interpolierten Achsen							
Kleiner oder gleich 4		•	•	•	•	•	
Zwischen 5 und 9	000531	-	O*	О	0	0	
* Nur bei 1040W							
Multigruppen-/Kanalfunktion	000371	-	О	О	0	0	(1) (2)
maximale Anzahl		1	2	8	3	8	
4 Gruppen/Kanäle für 1040 GP	000279	-	О	-	-	-	
Parametrierbare Präzision	000519	О	О	О	0	0	(6)
Basis in GC, GS							
Umwandlung Zoll-Millimeter		•	•	•	•	•	
Spindelsteigungsfehlerkompensation	000260	•	•	•	О	О	
Synchronisierte und duplizierte Achsen (Gantry)	000266	О	0	О	0	О	(1)
Schräge Achsen	000315	О	О	0	O	О	
Progressive Beschleunigung		•	•	•	•	•	
Funktion Tandem (siehe Seiten 6/7 und 6/17)	000 453	-	-	0	=	-	
Funktion Look-Ahead		•	•	•	•	•	
Korrektur Anti-Pitch		•	•	•	•	•	
Linear- und Kreisinterpolation in der Arbeitsebene		•	•	•	•	•	
Helixinterpolation		•	•	•	•	•	(2)
Spline-Interpolation	000518	O	0	0	0	0	
Polynominterpolation und Spline-Interpolation	000499	O	0	0	0	0	
Interpolation NURBS (B-Spline) bei M und W	000 426	-	0	0	0	0	(1)
3D-Kurvenglättung für M, W und GP	081706	O	0	0	0	0	
DYNOPS / Dynamische Operatoren (siehe Seite 2/26)							
Spindelfunktionen							
Spindelindexierung		•	•	•	•	•	
Automatische Wahl der Getriebestufe		•	•	•	•	•	
Konstante Schnittgeschwindigkeit (Drehen)		•	•	•	•	•	
Gewindeschneiden (Drehen)		•	•	•	•	•	
Ansteuerung Achse/Spindel-Gewindeschneiden Basis in GC und T	000331	О	Ο	О	О	О	(8)
Spindelsynchronisation	000156	-	О	0	0	0	(2)
Gewindebohren ohne Ausgleichsfutter für T, M, W, M <i>plus</i> und T <i>plus</i>	000332	О	Ο	О	О	О	(3)
Werkzeugverwaltung							
Wahl der Werkzeugachse		•	•	•	•	•	
32 Werkzeugkorrekturen		•	•	•	•	•	
Erweiterung auf 255 Korrekturen	000 401	0	0	0	0	0	
Radius- und Längenkorrektur		•	•	•	•	•	
3D-Werkzeugkorrektur beim Fräsen (M, W und GP)	000400	О	О	0	0	О	(12)
5 Achs-Werkzeugkorrektur beim Fräsen (M und W)	000411	-	O *	0	0	О	,
Erfordert die Interpolation für 5 bis 9 Achsen (000 531)							
* nur für Num Power 1040W							
Dynamische Werkzeugkorrektur über die SPS	000410	_		0	0	0	(8) (9)

- (1) außer Num Mplus und Num Tplus
- (2) außer Num Power 1040 GP
- (3) Option bei Num Mplus und Num Tplus wenn Option Full ISO (000 593) vorhanden
- (6) nicht mit dem Kompaktbedienfeld kompatibel
- (8) in der Konfiguration Drehen Num Power 1050 enthalten (9) in der Konfiguration Fräsen Num Power 1050 enthalten
- (12) möglich bei Num Mplus wenn Option Full ISO (000 593) vorhanden
- Grundausführung
- Option
- nicht verfügbar

Gesamtübersicht

SPS-Funktionen

Bezeichnung	Bestell-		Komp	akte CNC Nu	ım Power		
	nummern	1020	1040	1050	1060	1080	
Analoge Eingänge A/D-Wandler 12 Bit Analoge Ausgänge D/A-Wandler 12 Bit Interrupt 24 V		2 1 2	2 1 2	2 1 2	2 1 2	2 1 2	
Integrierte E/A-Karten - Wahlweise eine Karte pro System - Auf Num Power 1060 und 1080 kann eine Karte pro Modax-Modul integriert werden Karte mit 32 Ein- und 24 Ausgängen 250 mA DIN Karte mit 64 Ein- und 48 Ausgängen 250 mA DIN Kabel für 32 Eingänge 1 m 2 m 5 m Kabel für 24 Ausgänge 1 m	000 631 000 636 080 090 080 091 080 094 080 092						
2 m 5 m Module zur E/A-Verdrahtung Schnittstellenmodul mit 32 Eingängen	080 093 080 095 080 080	0	0	0	0	0	
Relaismodul mit 24 Ausgängen	080 084	0	0	0	0	0	
Dezentrale E/A-Module Bis zu 32 Modulen über Lichtwellenleiter mit der CNC verbunden (siehe Seite 2/10) Maximale Anzahl E/A * 384 E/A für 1040W, 512 E/A für 1060W Dezentrales Modul mit 16 Eingängen Dezentrales Modul mit 16 Eingängen/16 Ausgängen 24 V= 0,5 A Dezentrales Modul mit 8 Eingängen/8 Relaisausgängen 2 A Dezentrales Modul mit 4 analogen Ein-/2 analogen Ausgängen (maximal 4 Module)	080 097 080 098 080 099 080 096	112 - - - -	256* O O O	768	336* O O O	1024 O O O	
Steckklemmen Satz mit 3 Schraub-/Steckklemmen Satz mit 3 Federzug-/Steckklemmen	080 120 080 121	- -))))))))	
Klemmleisten Klemmleiste mit 1 Reihen Schraubklemmen Klemmleiste mit 2 Reihen Schraubklemmen Klemmleiste mit 3 Reihen Schraubklemmen Klemmleiste mit 1 Reihen Federzugklemmen Klemmleiste mit 2 Reihen Federzugklemmen Klemmleiste mit 3 Reihen Federzugklemmen	080 122 080 124 080 126 080 123 080 125 080 127	- - - - -))))))))	O O O O))))	
Programmierung der SPS Programmierung in Ladder C-Programmierung	000571	•	•	•	•	•	

- GrundausführungOptionnicht verfügbar

Gesamtübersicht

Verfügbare Funktionen für die Technologie Drehen auf den CNC-Steuerungen Num Power 1050 Num Power 1020T, 1040T, 1060T, 1080T

Für die CNC Num Power 1050 erfolgt die Technologiezuordnung mit der Option "Konfiguration Drehen", zu der die für die Applikation erforderlichen Funktionen hinzukommen.

Betreffs der verfügbaren Funktionen für die werkstattorientierte CNC-Steuerung Num Tplus siehe Seite 2/24 und 2/25.

Bezeichnung	Bestell-		Komp	akte CNC N	um Power		
	nummern	1020	1040	1050	1060	1080	
Konfiguration Drehen für Num Power 1050 Umfasst die Drehzyklen (G81 bis G86, G87, G89, G63 bis G66, G96, G33, G38) und folgende Funktionen: Ansteuerung Achse/Spindel (000 331), dynamische Werkzeugkorrekturüberdie SPS (000 410), Mass-Stabsfaktor (Scaling) (000 506) und Messwerterfassung (000 520). Erfordert mindestens 2 CNC-Achsen (000 450) und eine Digitalspindel (000 452) (siehe Seite 2/11).	000196	•		O	-	-	
Bearbeitungszyklen							
Zyklen zur Polygonbearbeitung (Diskette)	000 538	О	О	O*	О	О	(8)
* Auf Anfrage Messzyklen T (Diskette)	000 590	О	О	0	0	0	/4.0
umfasst die Funktionen: Transfer der aktiven, parametrierten Werte in Teileprogramme (000 511), Messwerterfassung (000 520), Strukturierte Programmierung (000 535), Das Handbuch "Messzyklen T" und 1 RAM Speichermodul mit 32 kB.	555 555		3		J	3	(10
Bearbeitung mit hoher Konturpräzision (UGV1)	000155	О	О	Ο	О	О	
Programmierung 2D-Grafikdarstellung Parametrierte Programmierung Konturzugprogrammierung (PGP) und PROFIL Umwandlung kartesisch/polar (G21, G22) Mass-Stabsfaktor (Scaling)(G74) Programmierte Winkelverschiebung (ED) Transfer der aktiven Werte in Teileprogramme (G76) Strukturierte Programmierung, Programmstapel und Symbolvariablen Erstellen einer Tabelle zum Ablegen der Profile Umfasst die strukturierte Programmierung (000 535)	000 340 000 506 000 507 000 511 000 535						(8)

(8) in der Konfiguration Drehen Num Power 1050 enthalten (10) Bitte bei uns anfragen

- Grundausführung
- Option
- nicht verfügbar

Gesamtübersicht

Verfügbare Funktionen für die Technologie Drehen auf den CNC-Steuerungen Num Power 1050 Num Power 1020T, 1040T, 1060T, 1080T

Bezeichnung	Bestell-		Komp	akte CNC Nu	um Power		
	nummern	1020	1040	1050	1060	1080	
PROCAM TURN umfasst folgende Funktionen: Programmierbare Winkelverschiebung (000 507), Transfer der aktiven, parametrierten Werte in Teileprogramme (000 511), Die Diskette PROCAM TURN, die Handbücher "Interaktive Programmierung PROCAM TURN" und "Technologische Daten PROCAM TURN", sowie 8 RAM Speichermodule mit je 32 kB (256 kB RAM).	000113 000239	0 -	•	•	0 -	· .	
PROCAM MULTITURN umfasst folgende Funktionen: Programmierbare Winkelverschiebung (000 507), Transfer der aktiven, parametrierten Werte in Teileprogramme (000 511), Die Diskette PROCAM MULTITURN, das Handbuch "Interaktive Programmierung PROCAM TURN" und 16 RAM Speichermodule mit je 32 kB RAM (Qp).	000133	-	O	O	0	O	
Sonderfunktionen Notrückzug (G75) Messwerterfassung (G10) Zurückfahren auf der Kontur Grundausführung bei Num Tplus	000505 000520 000523	○ • ○	○ • ○				(8)

(8) in der Konfiguration Drehen Num Power 1050 enthalten

- Grundausführung
- Option Option
- nicht verfügbar

Gesamtübersicht

Verfügbare Funktionen für die Technologie Fräsen auf den CNC-Steuerungen Num Power 1050 Num Power 1020M, 1040M, 1060M, 1080M

Für die CNC Num Power 1050 erfolgt die Technologie-Zuordnung mit der Option "Konfiguration Fräsen", zu der die für die Applikation erforderlichen Funktionen hinzukommen.

Verfügbare Funktionen für die werkstattorientierte CNC-Steuerung Num Mplus: siehe Seite 2/24 und 2/25.

Bezeichnung	Bestell-		Komp	akte CNC No	um Power		
	nummern	1020	1040	1050	1060	1080	
Konfiguration Fräsen für Num Power 1050 Umfasst die Fräszyklen (G31, G81 bis G89, G45) und die Funktionen: Programmierte Winkelverschiebung (000 507) Dynamische Werkzeugkorrektur über die SPS (000 410), Scaling (000 506) und Messwerterfassung (000 520). Erfordert mindestens 3 CNC-Achsen BestNr. 000 450 (siehe Seite 2/11).	000195	-	-	0	-	-	
Bearbeitungszyklen							
Funktion Ausbohren/Radialachse (M und W)	000514	0	0	О	О	О	
Beliebige Taschen- und Planfräszyklen	000159	О	0	O	О	О	
Hochgeschwindigkeitsbearbeitung mit hoher Konturpräzision (UGV1)	000155	О	О	Ο	О	О	
RTCP (G26 +/-)	000154	-	0	O	0	О	
Schiefe Ebene (G24 +/-)	000914	О	0	О	О	О	
Kombinierte Maschine (Fräsen + Drehen)	000581	-	0	О	0	О	
umfasst die Drehzyklen und folgende Funktionen: Ansteuerung Achse/Spindel (000 331), Umwandlung kartesisch/polar und zylindrisch (000 340), Doppelfenstergrafik, Ausbohren (Radialachse) (000 514), das Programmierhandbuch T und das Bedienerhandbuch T.							
Messzyklen M	000591	0	0	О	0	0	(10)
umfasst die Disketten und folgende Funktionen: Transfer der aktiven, parametrierten Werte in das Teileprogramm (000 511), Dynamische Messwerterfassung (000 520), Strukturierte Programmierung (000 535), Das Handbuch "Messzyklen M" und 3 Module mit je 32 kB RAM (Qp).	000391						

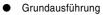
(9) in der Konfiguration Fräsen Num Power 1050 enthalten (10) Bitte bei uns anfragen

- Grundausführung
- O Option
- nicht verfügbar

Gesamtübersicht

Verfügbare Funktionen für die Technologie Fräsen auf den CNC-Steuerungen Num Power 1050 Num Power 1020M, 1040M, 1060M, 1080M

Bezeichnung	Bestell-		Komp	akte CNC No	ım Power		
	nummern	1020	1040	1050	1060	1080	
Programmierung							
2D-Grafikdarstellung		•	•	•	•	•	
3D-Grafikdarstellung	000158	0	0	0	0	0	
Parametrierte Programmierung		•	•	•	•	•	
Konturzugprogrammierung (PGP) und PROFIL Mass-Stabsfaktor (Scaling) (G74)	000506			0	0	0	(9)
Programmierte Winkelverschiebung (ED)	000507	•	•	0	•	•	(9)
Transfer der aktiven Werte in Teileprogramme (G76)	000511	•	•	0	0	0	(0)
Strukturierte Programmierung, Programmstapel und Symbolvariablen	000535	•	•	0	0	0	
Erstellen einer Tabelle zum Ablegen der Profile	000536	0	О	О	О	О	
Umfasst die strukturierte Programmierung (000 535)							
PROCAM MILL	000113	0	0	-	0	0	
umfasst folgende Funktionen: Programmierte Winkelverschiebung (000 507), Transfer der aktiven, parametrierten Werte in Teileprogramme (000 511), Die Diskette PROCAM MILL, die Handbücher "Technologische Daten PROCAM MILL", und "Interaktive Programmierung PROCAM MILL", und 8 RAM Speichermodule mit je 32 kB (256 kB RAM).	000238		-	O	-		
PROCAM MX (kombinierte Maschine) umfasst folgende Funktionen: Programmierte Winkelverschiebung (000 507), Transfer der aktiven, parametrierten Werte in Teileprogramme (000 511), Die Disketten PROCAM MILL und PROCAM TURN Die Handbücher "Interaktive Programmierung PROCAM MILL" und "PROCAM TURN" und 16 RAM Speichermodule mit je 32 kB (512 kB RAM).	000134	-	O	O	O	•	
NUMAFORM, Bearbeitungszyklen für den Formenbau umfasst folgende Funktionen: Dynamische Operatoren (000 250), 3D-Werkzeugkorrektur (000 400), Strukturierte Programmierung (000 535), Funktion "BUILD" (000 536), Die Handbücher: "Dynamische Operatoren", "ProgrammierungM-W"und "BedienerhandbuchM-W".	000917	0	0	•	0	O	
Sonderfunktionen							
N/M Auto (Handräder im Automatikmode)	000 082	-	0	О	0	О	
Notrückzug (G75)	000 505	0	О	О	О	О	
Messwerterfassung (G10)	000520	•	•	0	0	0	(9)
Zurückfahren auf der Kontur	000 523	0	Ο	Ο	Ο	0	


⁽⁹⁾ in der Konfiguration Fräsen Num Power 1050 enthalten

- Grundausführung
- O Option
- nicht verfügbar

Gesamtübersicht

Verfügbare Funktionen für die Technologie Fräsen auf den CNC-Steuerungen Num Power 1050 Num Power 1020M, 1040M, 1060M, 1080M

Bezeichnung	Bestell-		Komp	akte CNC Nu	ım Power		
	nummern	1020	1040	1050	1060	1080	
Fräspakete für die CNC Num Power 1050, Konfiguration Fräsen nötig (siehe Seite 2/16).							
Paket Fräsen Nr. 1 umfasst folgende Funktionen: PROCAM MILL (000 113) und 8 Module mit je 32 kB für dessen Installation (256 kB), 128 kB zusätzlicher RAM-Speicher für das Teileprogramm (Qp), 3D-Grafikanzeige (000 158), Taschen- und Planfräszyklen mit beliebiger Kontur (000 159), Gewindebohren ohne Ausgleichsfutter (000 332), Steuerung für Spindel Nr. 1 mit Messsystem (000 366), 3D-Werkzeugkorrektur (000 400), Erweiterung auf 255 Korrekturwerte (000 401), Mass-Stabsfaktor (Scaling) (000 506), Programmierbare Winkelverschiebung (000 507), Transfer der aktiven, parametrierten Werte in Teileprogramme (000 511), Bearbeitung in der schiefen Ebene (000 914), Die Disketten PROCAM MILL, die Handbücher "Interaktive Programmierung PROCAM MILL", "Technologische Daten PROCAM MILL" und "Hilfsmittel für die Integration der schiefen Ebene und der Achszuweisung".	000382	0	•		0	•	
Paket Fräsen Nr. 2 umfasst folgende Funktionen: RTCP (000 154), 5-Achsen Werkzeugkorrektur (000 411), Bearbeitung in der schiefen Ebene (000 914), Die Diskette PROCAM, und das Handbuch "Hilfsmittel für die Integration der Funktion RTCP".	000383	-	-	0	O	•	
Paket Fräsen Nr. 3 umfasst die Pakete Nr. 1 und Nr. 2.	000384	•	•	· ·	0	· ·	

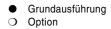
Option (

nicht verfügbar

Gesamtübersicht

Verfügbare Funktionen für die technologiefreie Baureihe der CNC Num Power 1040GP

Bezeichnung	Bestell-		Komp	akte CNC Nu	um Power		
-	nummern	1020	1040	1050	1060	1080	
Zyklen Bearbeitungszyklen Schiefe Ebene Hochgeschwindigkeitsbearbeitung mit hoher Konturpräzision (UGV1)	000 914 000 155	- - -	• • • • • • • • • • • • • • • • • • • •	- - -	- - -	- - -	
Programmierung Kreisinterpolation 2D-Grafikdarstellung Parametrierte Programmierung Konturzugprogrammierung (PGP) und PROFIL Mass-Stabsfaktor (Scaling) Programmierte Winkelverschiebung Transfer der aktiven Werte in Teileprogramme Strukturierte Programmierung, Programmstapel und Symbolvariablen Erstellen einer Tabelle zum Ablegen der Profile Umfasst die strukturierte Programmierung (000 535) Diskette mit Messzyklen Umfasst das Handbuch "Messzyklen", und 3 Module mit je 32 kB (96 kB RAM).	000497 000506 000507 000511 000535 000536	- - - - - -	OOOO	- - - - - -			
Sonderfunktionen Notrückzug Messwerterfassung Zurückfahren auf der Kontur	000 505 000 520 000 523		0 • 0				


- Grundausführung
- Option
- nicht verfügbar

Gesamtübersicht

Verfügbare Funktionen für die Technologie Rundschleifen auf den CNC-Steuerungen Num Power 1020GC, 1040GC, 1060GC, 1080GC

Bezeichnung	Bestell-		Komp	akte CNC Nu	ım Power		
	nummern	1020	1040	1050	1060	1080	
Bearbeitungszyklen							
Drehzyklen		•	•		•	•	
Hochgeschwindigkeitsbearbeitung mit hoher Konturpräzision (UGV1)	000 155	0	0	•	0)	
Programmierung							
PD-Grafikdarstellung		•	•	-	•	•	
Parametrierte Programmierung		•	•	-	•	•	
Konturzugprogrammierung (PGP) und PROFIL		•	•	•	•	•	
Jmwandlung kartesisch/polar (G21, G20)	000340	О	О	•	О	О	
Mass-Stabsfaktor (Scaling) (G74)	000 506	•	•	•	0	0	
Programmierte Winkelverschiebung (ED)	000 507	•	•	-	0	0	
Fransfer der aktiven Werte in Teileprogramme (G76)	000511	•	•	-	•	•	
Strukturierte Programmierung, Programmstapel und Symbolvariablen	000535	•	•	•	•	•	
Erstellen einer Tabelle zum Ablegen der Profile	000536	О	О	•	О	О	
Umfasst die strukturierte Programmierung (000 535)							
Sonderfunktionen							
Notrückzug (G75)	000 505	•	•	-	•	•	
Messwerterfassung (G10)	000 520	•	•	-	О	О	
Zurückfahren auf der Kontur	000 523	О	О	-	О	О	

⁻ nicht verfügbar

Gesamtübersicht

Verfügbare Funktionen für die Technologie Planschleifen auf den CNC-Steuerungen Num Power 1020GS, 1040GS, 1060GS, 1080GS

Bezeichnung	Bestell- Kompakte CNC Num Power					
	nummern	1020	1040	1050	1060	1080
Bearbeitungszyklen						
räszyklen		•	•	-	•	•
Bearbeitung mit hoher Konturpräzision (UGV1)	000 155	О	0	-	0	О
Programmierung						
Programmerung D-Grafikdarstellung		•	•	_	•	•
D-Grafikdarstellung	000158	0	0	-	0	0
Parametrierte Programmierung		•	•	-	•	•
Conturzugprogrammierung (PGP) und PROFIL		•	•		•	•
Mass-Stabsfaktor (Scaling) (G75)	000506	•	•	-	О	0
Programmierte Winkelverschiebung (ED)	000507	•	•	-	О	О
ransfer der aktiven Werte in Teileprogramme (G76)	000511	•	•	•	•	•
Strukturierte Programmierung, Programmstapel und Symbolvariablen	000535	•	•	-	•	•
Erstellen einer Tabelle zum Ablegen der Profile	000536	О	О	-	О	О
Umfasst die strukturierte Programmierung (000 535)						
Gonderfunktionen Notrückzug (G75) Messwerterfassung (G10) Vurückfahren auf der Kontur	000 505 000 520 000 523	•	•		• • •	• • • • • • • • • • • • • • • • • • • •

- Grundausführung
- O Option
 - nicht verfügbar

Gesamtübersicht

Verfügbare Funktionen für die Holzbearbeitung auf den CNC-Steuerungen Num Power 1020W, 1040W, 1060W , 1080W

Für die CNC Num Power 1050, siehe Fräsfunktionen auf den Seiten 2/16 bis 2/18.

Bezeichnung	Bestell-		Komp	akte CNC N	um Power		
	nummern	1020	1040	1050	1060	1080	
Bearbeitungszyklen							
Fräszyklen		•	•	-	•	•	
Funktion Ausbohren/Radialachse (M und W)	000514	О	О	-	О	О	
Zyklen für Kreis-, Rechteck und Langlochtaschen		•	•	-	•	•	
Taschenzyklus für beliebige Konturen	000159	О	0	-	О	О	
Hochgeschwindigkeitsbearbeitung mit hoher Konturpräzision (UGV1)	000155	О	О	-	О	О	
RTCP	000154	-	О	-	О	О	
Schiefe Ebene	000914	О	О	-	О	О	
Kombinierte Maschine (Fräsen + Drehen) umfasst die Drehzyklen und folgende Funktionen: Ansteuerung Achse/Spindel (000 331), Umwandlung kartesisch/polar und zylindrisch (000 340), Doppelfenstergrafik, Ausbohren (Radialachse) (000 514), das Programmierhandbuch T und das Bedienerhandbuch T.	000 581	-	0	-	0	O	
Messzyklen (auf Diskette) umfasst das Handbuch "Messzyklen M" und 3 RAM Speichermodule mit je 32 kB (96 kB RAM)	000 591	O	0	-	0	O	(10)
Programmierung 2D-Grafikdarstellung		•		-	•	•	
3D-Grafikdarstellung	000158	0	0	-	0	О	
Parameterprogrammierung		•	•	-	•	•	
Konturzugprogrammierung (PGP) und PROFIL		•	•	•	•	•	
Mass-Stabsfaktor (Scaling)	000506	•	•	•	0	0	
Programmierte Winkelverschiebung	000507	•	•	-	•	•	
Transfer der aktiven Werte in Teileprogramme Strukturierte Programmierung, Programmstapel und Symbolvariablen	000 511 000 535	•	•	•	0	0	
Erstellen einer Tabelle zum Ablegen der Profile	000536	0	0	_	0	0	
Umfasst die strukturierte Programmierung (000 535)	000 300	J			J	9	
PROCAMMILL	000113	O	0		0	0	
umfasst folgende Funktionen: Programmierbare Winkelverschiebung (000 507), Transfer der aktiven, parametrierten Werte in Teileprogramme (000 511), Die Diskette PROCAM MILL, die Handbücher "Technologische Daten PROCAM MILL" und "Interaktive Programmierung PROCAM MILL" und 8 RAM Speichermodule mit je 32 kB (256 kB RAM)							

(10) Bitte bei uns anfragen

de base

O en option

non disponible

Gesamtübersicht

Verfügbare Funktionen für die Holzbearbeitung auf den CNC-Steuerungen Num Power 1020W, 1040W, 1060W , 1080W

Bezeichnung	Bestell- Kompakte CNC Num Power						
	nummern	1020	1040	1050	1060	1080	
PROCAMMX (kombinierte Maschine) umfasst folgende Funktionen: Programmierte Winkelverschiebung (000 507), Transfer der aktiven, parametrierten Werte in Teileprogramme (000 511), Die Disketten PROCAM MILL und PROCAM TURN Die Handbücher "Interaktive Programmierung PROCAM MILL" und "PROCAM TURN" und 16 RAM Speichermodule mit je 32 kB (512 kB RAM)		-	0		0	O	
NUMAFORM Bearbeitungszyklen für den Formenbau umfasst folgende Funktionen: Dynamische Operatoren (000 250), 3D-Werkzeugkorrektur (000 400), Strukturierte Programmierung (000 535), Funktion "BUILD" (000 536), Die Handbücher: "Dynamische Operatoren", "Programmierung M-W" und "Bedienerhandbuch M-W".	000917	Ο	0	-	0	O	
Betriebsart N/M Auto (Handräder im Automatikbetrieb) Notrückzug (G75) Messwerterfassung (G10) Zurückfahren auf der Kontur	000 082 000 505 000 520 000 523	O •)) •))))))	
Pakete Paket Holz Nr. 1 zur Personalisierung der Bedieneroberfläche umfasst folgende Funktionen: Austauschprotokoll zwischen Prozessoren (000 112) Transfer der aktiven, parametrierten Werte in Teileprogramme (000 511), SPS-Programmierung in C (000 571), 1 Modul mit 64 kB RAM zusätzlichem SPS-Speicher.	000380	0	0	-	0	O	
Paket Holz Nr. 2 umfasst das Paket Nr. 1 und die Funktion PROCAM MILL (000 113).	000381	0	0		0	O	

- Grundausführung
- Option (
- nicht verfügbar

Gesamtübersicht

Verfügbare Funktionen für die werkstattorientierten CNC-Steuerungen Num Mplus (Fräsen) und Num Tplus (Drehen)

Die werkstattorientierten CNC-Steuerungen Num Mplus und Num Tplus vereinen Flexibilität und Komfort der Bearbeitung mit Handrädern mit der Präzision und der Produktivität einer CNC. Sie sind dazu mit einer speziellen Bedieneroberfläche und Tastatur ausgestattet. Der Editor Light ISO ermöglicht die werkstattorientierte Erstellung von Bearbeitungsprogrammen anhand von vorformatierten Sätzen, die mit repräsentativen Symbolen der verschiedenen Arbeitsgänge aufgerufen werden können. Mit dem Editor FULL ISO und einem Bedienfeld werden die CNC NUM Mplus und NUM Tplus zu einer vollwertigen CNC NUM 1040.

Weitere Einzelheiten der angegebenen Funktionen finden Sie in der Tabelle der Funktionen Fräsen und Drehen in der Gesamtübersicht und in den Funktionsbeschreibungen (Kapitel 4).

Bezeichnung	Bestell-	Num M <i>plus</i>		Num M <i>plus</i> Num T <i>plus</i>		
	nummern	Grund- ausführung	mit der Option FULL ISO	Grund- ausführung	mit der Option FULL ISO	
Achsen, Spindeln, Handräder für NUM Mplus 3 CNC-Achsen in der Grundausführung Handräder: Eine der beiden Funktionen wahlweise		•	•	-	-	
3 CNC-Achsen in der Grundausführung Inkompatibel mit der Spindel mit Messsystem (000 366)	000 309	•	•	-	-	
1 umschaltbarer Messsystemeingang Erforderlich für folgende Funktionen:	000 409	•	•	-	-	
1 zusätzliche CNC-Achse	000 373	0	0	-	-	
Spindel mit Messsystem Spindel ohne Messsystem	000 366 000 375	0	0	-	-	
1 bis 2 SPS-Achsen	000 57 3	Ö	ŏ	-	-	
Maximal 6 Messkreise sind möglich						
Achsen, Spindeln, Handräder für NUM T <i>plus</i>				_		
CNC-Achsen in der Grundausführung zusätzliche CNC-Achse	000 373	•	-	•	•	
2 Messsystemeingänge für Handräder	000373	-	-	•	•	
Spindel mit Messsystem		-	-	•	•	
2. Spindel mit Messsystem	000 367	-	-	-	0	
1 Spindel ohne Messsystem	000 375 000 534	-	-	•	0	
1 SPS-Achse Maximal 6 Messkreise sind möglich	000 554	-	-	J	J	
Verfügbare Funktionen in der Grundausführung						
Fräsen		•	•	-	-	
Drehen, konstante Schnittgeschwindigkeit,		-	_	•	•	
Gewindebohren Applikationssoftware Num M <i>plus</i>		•	•	-	•	
Applikationssoftware Num T <i>plus</i>		•	•	•	•	
PROCAM-Interpreter		•	•	•	•	
MMI-Interpreter		•	•	•	•	
Bildschirmausdruck (Hardcopy) Linear- und Kreisinterpolation in der Arbeitsebene				-	•	
Helixinterpolation		•	•	•	•	
Spindelsteigungsfehlerkompensation		-	0	•	•	
Ansteuerung Achse/Spindel	000519	0	0	-	-	
Parametrierbare Präzision Dynamische Operatoren und Achsabgleich						
Konturzugprogrammierung und PROFIL		•	•	•	•	
Mass-Stabsfaktor (Scaling) (G74)		•	•	•	•	
Programmierte Winkelverschiebung (ED)		•	•	•	•	
Parameterprogrammierung Transfer der aktiven Werte in das Teileprogramm (G76)		•			•	
Strukturierte Programmierung, Programmstapel und		•	•	•	•	
Symbolvariablen		•	•	•	•	

- Grundausführung Option

Gesamtübersicht

Verfügbare Funktionen für die intuitiven CNC-Steuerungen Num M*plus* (Fräsen) und Num T*plus* (Drehen)

Bezeichnung	Bestell-	Nun	n M <i>plus</i>	Nun	n T <i>plus</i>
-	nummern	Grund-	mit der Option	Grund-	mit der Option
		ausführung	FULLISO	ausführung	FULL ISO
Erstellen einer Tabelle zum Ablegen der Profile		•	•	-	O
Notrückzug	000 505	0	O	0	0
Messwerterfassung Zurückfahren auf der Kontur		•	•	•	•
Dynamische Werkzeugkorrektur durch die SPS					
2) Tallinoon on the control of the c		·		•	_
Editor Light ISO und Grafiksimulation	000412	O	0	O	0
Umfasst die Funktionen Grafiksimulation,					
Laden/Speichern von Teileprogrammen in ISO					
und die Umwandlung der Programme Num Mplus und Num Tplus in ISO.					
und Num Tpius in 166.					
Editor FULL ISO	000 593	•	•	-	•
Erfordert den Austausch des Bildschirms gegen ein Bedienfeld MP20, CP20, FTP20 oder CP30.					
Ermöglicht den Zugang zu folgenden Funktionen:					
Achsen					
Schräge Achsen	000 315 000 914	<u>-</u>	0	<u>-</u>	-
Funktion schiefe Ebene (G24 +/-) Hochgeschwindigkeitsbearbeitung mit hoher	000914	-	9	-	-
Konturpräzision (UGV1)	000155	0	0	-	0
Spindeln					
Gewindebohren ohne Ausgleichsfutter	000332	_	0	_	0
Ansteuerung Achse/Spindel - Gewindeschneiden	000331	-	O	•	•
Synchronisierung der Spindeln	000156	-	0	-	О
Werkzeuge					
Erweiterung auf 255 Werkzeugkorrekturen (Grundausführung = 32)		-	О	-	0
3D-Werkzeugkorrektur	000 400	-	0	-	-
Programmierung					
3D-Grafik	000158	-	О	-	-
PROCAM TURN	000113	-	О	-	-
PROCAM TURN Ausbohrmaschine/Radialachse	000 113 000 514	-	0	-	•
Taschenzyklus für beliebige Formen	000159		ŏ	-	-
NUMAFORM, Bearbeitungszyklus für Formen	000917	-	0	-	•
Umwandlung kartesisch/polar (G21, G22) Spline-Interpolation	000 340 000 518	-	•	-	0
Glatte Polynominterpolation und Splin	000 499	-	0	-	0
Kurvenglättung im Raum	081706	-	Ö	-	-
Dynamische Operatoren in C und Achsabgleich	000 249	-	-	-	-
Erstellen einer Tabelle zum Ablegen der Profile Funktion kombinierte Maschine (Fräsen + Drehen)	000 536 000 581		0	-	O •
Softwarepaket Nr. 1	000382	-	ŏ	-	-
Messzyklen M	000 591	-	0	-	-
Messzyklen T	000 590	-	•	-	О
Kommunikation	000.000				
3. serielle Schnittstelle	000 252 000 112	0	0	0	0
Datanauetauech zwiechen Prozoccoron		•	9	-	
Datenaustausch zwischen Prozessoren Uni-Telway	000 911	-	0	-	Ō

- Grundausführung
- O Option
- nicht verfügbar

Gesamtübersicht

Kommunikation Software für Integration und Personalisierung

Diese Funktionen sind im Kapiel 4 Funktionsbeschreibungen beschrieben.

Bezeichnung	Bestell- Kompakte CNC Num Power						
	nummern	1020	1040	1050	1060	1080	
Serielle Schnittstellen							
Systeme mit CNC-Bedienfeldern							
Serielle Schnittstellen in Basisausführung		2	2	3	3	3	
3. serielle Schnittstelle	000252	0	0	•	•	•	
Systeme mit PC-Bedienfeld							
Serielle Verbindung 115 KBd		•	•	•	•	•	
Datenaustausch zwischen Prozessoren	000112	0	0	0	0	0	
Anschluss an Netze							
Jni-Telway	000911	0	0	0	0	0	
Fipway	000924	0	0	0	0	0	
Zubehör							
Diskettenlaufwerk für serielle CNC-Schnittstelle	081 002	0	0	0	0	0	(1)
RESIDENTE SOFTWARE							
PROCAM-Interpreter		•	•	•	•	•	
MMI-Interpreter							
Wit Karte zur Bedienfeldkommunikation (000720, 000740,		•	•	•	•	•	
000741,000760,000761)		-	_	_	-	-	
Ohne Karte zur Bedienfeldkommunikation (000620, 000640,							
000641,000660,000661)	000 946	О	О	О	О	О	
Dynamische Operatoren							
Dynamische Operatoren	000 250	0	О	О	0	О	
In der Basisausführung auf GC und GS, Mplus, Tplus.							
Dynamische Operatoren in C	000 249	-	О	О	О	О	(1)
In der Basisausführung auf GC und GS 1060 und 1080 Auf 1040, 1050, 1060 und 1080 ist ein System mit							
Coprozessor erforderlich.							

⁽¹⁾ außer Num M*plus* und Num T*plus*

- Grundausführung
- O Option
- nicht verfügbar

Gesamtübersicht

Software für Integration und Personalisierung

Diese Funktionen sind im Kapiel 4 Funktionsbeschreibungen beschrieben.

Bezeichnung	Bestell-		Komp	akte CNC No	um Power		
	nummern	1020	1040	1050	1060	1080	
32-Bit PC-Software auf CD-ROM Beinhaltet die Software (Version Windows 95/98/2000/Me), den Schlüssel und die Software-Option, falls erforderlich, sowie die Dokumentation. Bestimmte Handbücher können als Einzelstücke als Papierausdruck bestellt werden (siehe Bestellung von einzelnen technischen Handbüchern auf Seite 2/30). Die verfügbaren Sprachen sind: französisch, englisch, deutsch und italienisch, wenn nicht anders angegeben.							
NUMBackUp PERSOTool Zusätzliche Dokumentation PERSOTool PCToolKit PC Panel MMI Zusätzliche Dokumentation PC Panel MMI	182093 182094 208521 182091 182109 208518	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	(14) (14)
PC Standard MMI SETTool CD - 1 Lizenz CD - 5 Lizenzen Zusätzliche Dokumentation SETTool	182110 182092 182192 208517	0 0	0 0	0 0	0 0 0	0 0	(14)
PLCTool CD - 1 Lizenz CD - 5 Lizenzen CD - 10 Lizenzen Zusätzliche Dokumentation PLCTool MMITool CD - 1 Lizenz	182 095 182 195 182 295 208 519 182 096	0 0 0	0 0 0))))	0 0 0 0	0 0 0 0	(14)
Zusätzliche Dokumentation MMITool Paket Softwaretoolpaket Nr. 1 für einen Arbeitsplatz	208 520	0	0	0	0	0	(14) (15)
Beinhaltet SETTool, PLCTool und MMITool Softwaretoolpaket Nr. 2 für einen Arbeitsplatz	182 188	0	0	0	0	0	
Beinhaltet SETTool und PLCTool Softwaretoolpaket auf CD für PC (32 Bit) Beinhaltet SETTool, PLCTool, MMITool, PCToolKit und PC Panel MMI	082 500	0	O	0	О	0	
C-Compiler	082 026	О	О	О	О	0	
Update der 16-Bit Werkzeuge für Windows 95/98 Dient zur Aufrüstung der 16-Bit Werkzeuge auf 32 Bit	082550	0	0	0	0	0	

(14) Handbuch auf der CD - Bestellnummer für Einheitsbestellung im Papierformat (15) in französisch und englisch erhältlich

- Grundausführung
- Option
- nicht verfügbar

Gesamtübersicht

Software für Integration und Personalisierung

Diese Funktionen sind im Kapiel 4 Funktionsbeschreibungen beschrieben.

Bezeichnung	Bestell-		Komp	akte CNC No	ım Power		
	nummern	1020	1040	1050	1060	1080	
32-Bit PC-Software auf CD-ROM Beinhaltet die Software (Version Windows 95/98), den Schlüssel und die Software-Option. Bestimmte Handbücher können als Einzelstücke als Papierausdruck bestellt werden (siehe Bestellung von einzelnen technischen Handbüchern auf Seite 2/30). Die verfügbaren Sprachen sind:							
französisch, englisch, deutsch und italienisch, wenn nicht anders angegeben. NUMBackUp							
CD - 1 Lizenz - 16 Bit CD - 1 Lizenz - 32 Bit	082067 082093))	0))	O O))	
PERSOTool CD - 1 Lizenz - 16 Bit CD - 1 Lizenz - 32 Bit Dokumentation PERSOTool in Papierform PCToolKit	082066 082094 208521	O O O	O O O)))	O O O)))	
CD - 1 Lizenz - 16 Bit CD - 1 Lizenz - 32 Bit PC Panel MMI 32 Bit	000 939 082 091 082 109	0 0 0	O O)))	O O)))	
Dokumentation PC Panel MMI in Papierform PC Standard MMI 32 Bit	208518 082110	0	0	0	0))	
SETTool 1 Lizenz - 16 Bit 1 Lizenz - 32 Bit 5 Lizenz - 32 Bit Dokumentation SETTool in Papierform	082036 082092 082192 208517	0 0 0	O O O	O O O	0 0 0	O O O	
PLCTool 1 Lizenz - 16 Bit 1 Lizenz - 32 Bit 5 Lizenz - 32 Bit 10 Lizenz - 32 Bit Dokumentation PLCTool in Papierform	082 023 082 095 082 195 082 295 208 519	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0))))	
MMITool 1 Lizenz - 16 Bit 1 Lizenz - 32 Bit Dokumentation MMITool in Papierform	082 083 082 096 208 520	O O O	O O O)))	O O O)))	(15)
Softwaretoolpaket Nr. 1 für einen Arbeitsplatz Beinhaltet SETTool, PLCTool und MMITool 16 Bit Ausführung 32 Bit Ausführung	082 086 082 186	0	0	O O	O O))	
Softwaretoolpaket Nr. 2 für einen Arbeitsplatz <i>Beinhaltet SETTool und PLCTool</i> 16 Bit Ausführung 32 Bit Ausführung	082088 082188	O O	0	O O	O O))	
Softwarepaket auf Diskette für PC Beinhaltet SETTool, PLCTool, MMITool, PCToolKit und PC Panel MMI 16 Bit Ausführung 32 Bit Ausführung	000 579 000 580	0	0	O O	0	O O	

(15) in französisch und englisch erhältlich

- Grundausführung
- O Option
- nicht verfügbar

Gesamtübersicht

Technische Handbücher

Diese Funktionen sind im Kapiel 4 Funktionsbeschreibungen beschrieben.

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1040 • • • • • • • • • • • • • • • • • • •	1050	1060	1080	(14) (14) (14) (14) (15) (14) (14) (14) (14) (14) (14) (14)
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0			0 0 0 0 0 0	(14) (14) (14) (15 (14) (15 (14) (14) (14) (16 (14)
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0			0 0 0 0 0 0	(14) (14) (14) (1 (14) (1 (14) (14) (14) (1 (14)
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0			0 0 0 0 0 0	(14) (14) (1 (14) (1 (14) (1 (14) (14) (1 (14) (1
00	0 0 0 0 0			0 0 0 0 0 0	(14) (14) (14) (1: (14) (1: (14) (14) (14) (1: (14)
00	0 0 0 0 0			0 0 0 0 0 0	(14) (14) (14) (1 (14) (1 (14) (14) (14) (1 (14)
00	0 0 0 0 0			0 0 0 0 0 0	(14) (14) (1 (14) (1 (14) (1 (14) (14) (1 (14) (1
22	0 0 0 0 0		0 0 0 0 0 0	0 0 0 0 0 0	(14) (14) (1 (14) (1 (14) (14) (14) (1 (14)
00	0 0 0 0 0		0 0 0 0 0	0 0 0 0	(14) (1 (14) (1 (14) (1 (14) (14) (14) (14) (14)
99	0 0 0		0 0 0	0 0 0	(14) (1 (14) (14) (14) (1 (14)
21	0 0		0 0	0 0 0	(14) (14) (14) (1 (14)
22	0	0	0	0	(14) (14) (14) (14)
8	0	0	0	0	(14) (14) (14)
8 O	0	0	0	0	(14)
5 - 4 O 9 -		0		-	(14)
5 - 4 O 9 -		0		-	(14
9 -	- O -	O	- O	0	` '
9 -	O -		0	O	(14)
	-	_			(14
1 0		0	-	-	(14) (
	0	О	О	0	, , ,
6 0	0	0	0	0	
1 -	О	-	-	-	(14) (1
7 0	О	О	О	О	(14)
	О	О	О	О	(14) (
5 -	О	-	-	-	(14)
	О	-	-	-	(14)
		0	О	0	(14) (
	О	О	О	О	(14) (
	0	0	0	0	(14
	0		0		(14) (
					(14) (
	0		0		(14) (
4 0	0	О	0	0	(14) (
3 0 7 6 5 7 5 7 8	37	37	37	37	37

Gesamtübersicht

Technische Handbücher

Diese Funktionen sind im Kapiel 4 Funktionsbeschreibungen beschrieben.

ezeichnung	Bestell-	Bestell- Kompakte CNC Num Power			Kompakte CNC Num Power		
	nummern	1020	1040	1050	1060	1080	
Integrations- und Inbetriebnahmeunterlagen							
Duplizierte und synchronisierte Achsen	938875	О	0	О	О	0	(14)
Messzyklen M	938948	О	0	О	О	0	(-
Messzyklen T	938 947	0	0	0	0	0	(1
Versetzte E/A	938 954	-	0	0	0	0	(1
Fipway – Integration	938972	O	0	0	0	0	(14)
Funktion RTCP – Integrationshilfsmittel	938 936	O	0	0	0	0	(1
Num T <i>plus</i> /Num M <i>plus</i> – Installation	938 968	-	0	-	-	-	(1
Dynamische Operatoren	938871	0	0	0	0	0	(14)
Schiefe Ebene und Achszuweisung – Integrationshilfsmittel	938935	О	О	О	О	0	(1
PROCAM-Beschreibungssprache	938 904	О	0	О	О	О	(14)
Pupitre PC - Installation/Anwendung	208507	О	0	О	О	О	(14)
Synchronisierung von zwei Spindeln	938854	О	0	O	О	О	(14)
Gewindeschneiden ohne Ausgleichsfutter	938881	О	0	О	О	0	(14)
Hochgeschwindigkeitsbearbeitung	938956	O	0	0	0	0	(14)
Uni-TE – Anwendung des Protokolls	938914	O	0	0	0	0	(14)
Uni-Telway - Integration	938880	О	О	О	О	О	(14)
NDERE UNTERLAGEN IN PAPIERFORM							
usätzlicher Satz Basis-Anwenderunterlagen Bedienerhandbuch, Programmierung und Ergänzung, Betriebshandbuch der Funktion PROFIL	000800	0	O	0	O	0	
usätzlicher Satz Inbetriebnahmeunterlagen Installation, Maschinenparameter, SPS- Programmierung in Ladder	000801	О	О	О	О	О	
usatz Windows 2000	938537	0	0	0	0	0	
PS-Programmierung in Ladder	938846	0	0	0	0	0	
estellung von einzelnen technischen Handbüche Papierform	rn						
Verwenden Sie den vierstelligen Sprachencode gefolgt von der Referenz des Handbuchs:							
0100: französisch 0101: englisch							
0102: deutsch 0103: italienisch							
0104: spanisch 0105: holländisch							
0106: schwedisch 0107: russisch							
0108: chinesisch							
eispiel:							
100 208 536: Installationshandbuch um Power 1020/1040/1060/1080 in französisch							
Einige Handbücher existieren in anderen Sprachen als französisch, englisch, deutsch und italienisch. Erkundigen Sie sich bei den NUM- Vertretungen betreffs der Verfügbarkeit der technischen Handbücher in den verschiedenen Sprachen.							

(14) Handbuch auf der CD - Bestellnummer für Einheitsbestellung im Papierformat(15) in französisch und englisch erhältlich (16) existiert nicht in englisch(17) in französisch erhältlich

(18) existiert nicht in deutsch

Grundausführung

Option

nicht verfügbar

Technische Daten

Inhaltsverzeichnis

CNC-Grundausführungen	Seite	
Kompakt-CNC Num Power 1020 und 1040	3/2	
Kompakt-CNC Num Power 1050	3/3	
Kompakt-CNC Num Power 1060 und 1080	3/4	
Bedienfelder		
Allgemeines	3/5	
PC-Bedienfeld FTP41	3/6	
LCD-Bedienfeld FS20	3/6	
Maschinenbedienfeld MP02	3/7	
Tragbares Bedienfeld POP	3/7	
PC-Tastatur Qwerty	3/7	
Bedienfelder mit CRT-Bildschirm CP30, MP20 und CP20	3/8	
CNC-Kompaktbedienfeld	3/9	
Maschinenbedienfeld MP01 und E/A-Erweiterung	3/9	
Bedienfelder Num M <i>plus</i> und T <i>plus</i>	3/10	
Multiplex		
Multiplexmodul	3/11	
Konfiguration mit mehreren CNC	3/11	
Konfiguration mit mehreren Bedienfeldern	3/11	
Die dezentralen Module		
Schnittstellenmodul mit 32 Eingängen	3/12	
Relaismodul mit 24 Ausgängen	3/12	
Dezentrale E/A-Module	3/12	
Achsanschlussmodul	3/12	
Verbindung CNC/LWL		
Kabelplan der durch LWL verbundenen Elemente	3/13	
	O/ 10	

Technische Daten

CNC Num Power 1020 und Num Power 1040

Num Power 1020

Die Zentraleinheit enthält die Funktionen der CNC, der SPS und der Kommunikation.

- 2 bis 4 Achsen je nach Ausführung (siehe Einzelheit auf Seite 2/3).
- Bis zu 64 Eingänge und 48 Ausgänge
- 2 A/D-Wandler 12 Bit
- 1 D/A-Wandler 12 Bit
- 2 Interrupteingänge 24 V
- Existiert in zwei Versionen:
 - mit Kommunikationskarte für die Num-Bedienfelder;
 - ohne Kommunikationskarte für die Num-PC-Bedienfelder FTP41 oder externen PC.

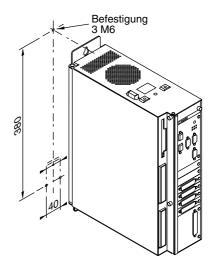
Verfügbare Technologien

• Fräsen	M
 Drehen 	Т
 Rundschleifen 	GC
 Planschleifen 	GS
 Holzbearbeitung 	W

Num Power 1040

Die Zentraleinheit enthält die Funktionen der CNC, der SPS und der Kommunikation.

- 1 bis 6 Achsen je nach Ausführung (siehe Einzelheit auf Seite 2/3).
- Bis zu 256 E/A (außer W 384 E/A)
- 2 A/D-Wandler 12 Bit
- 1 D/A-Wandler 12 Bit
- 2 Interrupteingänge 24 V
- Existiert in zwei Versionen:
- mit Kommunikationskarte für die Num-Bedienfelder;
- ohne Kommunikationskarte für die Num-PC-Bedienfelder FTP41 oder externen PC.


Für die Num Power 1040 sind zwei Ausbaustufen verfügbar: Optima und Ultra. Die Ausbaustufe Ultra dient zur globalen Leistungssteigerung des Systems.

Verfügbare Technologien

• Fräsen	M und Mplus
• Drehen	T und Tplus
 Rundschleifen 	GC
 Planschleifen 	GS
 Holzbearbeitung 	W
 Personalisierbare Baureihe 	GP

Gemeinsame Daten

•	Versorgungsspannung	24 VDC +20% ; -15%
•	Aufgenommene Leistung	40 W
•	Schutzart	IP20
•	Relative Luftfeuchtigkeit ohne	
	Kondensation	von 5 bis 95%
•	Lagertemperatur	von -25° bis +70° C
•	Betriebstemperatur	5° bis 55°
•	Gesamtabmessungen in mm	
	(L x H x P)	110 x 404 x 285
•	Gewicht	6 kg

Technische Daten

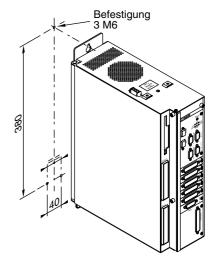
CNC Num Power 1050

Num Power 1050

Die Zentraleinheit enthält die Funktionen der CNC, der SPS und der Kommunikation.

Die CNC Num Power 1050 besitzt den digitalen Bus DISC NT, der 16 Antriebsverstärker verwalten kann.

- Bis zu 16 Achsen und Spindeln (siehe Seite 2/3)
- Bis zu 768 E/A
- 2 A/D-Wandler 12 Bit
- 1 D/A-Wandler 12 Bit
- 2 Interrupteingänge 24 V.
- Zwei Versionen verfügbar:
 - mit Kommunikationskarte für die Num-Bedienfelder.
 - ohne Kommunikationskarte für die Num-PC-Bedienfelder FTP41 oder externen PC.


Jede der beiden Versionen existiert mit oder ohne Coprozessor (siehe Seite 2/6). Dieser ist für die Option "dynamische Operatoren in C" (000 249) erforderlich.

Verfügbare Technologien

Die Konfigurationen Drehen oder Fräsen ermöglichen alle Applikationen.

Kenndaten

 Versorgungsspannung 	24 VDC
	+20%; -15%
 Aufgenommene Leistung 	70 W
 Schutzart 	IP20
· Relative Luftfeuchtigkeit ohne	
Kondensation	von 5 bis 95%
 Lagertemperatur 	von -25° bis +70° C
 Betriebstemperatur 	5° bis 55°
 Gesamtabmessungen in mm 	
(L x H x P)	110 x 404 x 285
Gewicht	6 kg

Technische Daten

CNC Num Power 1060 und Num Power 1080

Num Power 1060 und 1080

Die Zentraleinheit enthält die Funktionen der CNC, der SPS und der Kommunikation.

Sie ist in vier Versionen verfügbar:

- Version mit Karte zur Bedienfeldkommunikation in Verbindung mit den passiven Bedienfeldern;
- Version ohne Karte zur Bedienfeldkommunikation zur Verwendung mit den aktiven Bedienfeldern. Jede der beiden Versionen existiert mit oder ohne

Coprozessor (siehe Seite 2/6). Dieser ist für die Option "dynamische Operatoren in C" (000 249) erforderlich.

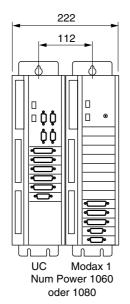
Num Power 1060

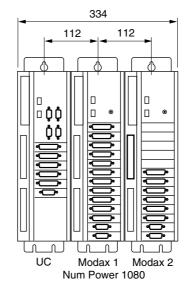
- Bis zu 8 Achsen und 12 Messsysteme (siehe Detail auf Seite 2/3)
- Bis zu 336 E/A (außer W 512 E/A)
- 2 Eingänge A/D-Wandler 12 Bit
- 1 Ausgang D/A-Wandler 12 Bit
- 2 Geräte-Interrupt 24 V.

Num Power 1080

- Bis zu 32 Achsen (siehe Detail auf Seite 2/3)
- Bis zu 1024 E/A
- 2 Eingänge A/D-Wandler 12 Bit
- 1 Ausgang D/A-Wandler 12 Bit
- · 2 Geräte-Interrupt 24 V.

Für die Num Power 1080 sind zwei Ausbaustufen verfügbar: Optima und Ultra. Die Ausbaustufe Ultra dient zur globalen Leistungssteigerung des Systems.


Erweiterungsmodule Modax

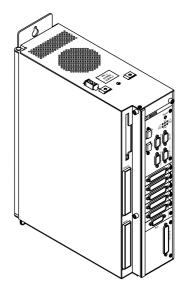

1080 von 2 bis 32 Kopplern

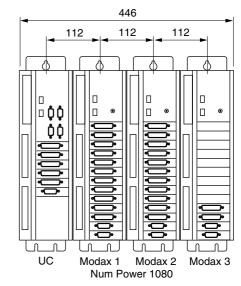
Beim Ausbau des Systems mit mehr als 6 Achskarten werden der Zentraleinheit Erweiterungsmodule zugeordnet, die zusätzlich zu den Achskarten E/A-Karten aufnehmen können.

•	1060/1080 von 2 bis 6 Kopplern	0 Modax
•	1060 von 2 bis 12 Kopplern	
	(maximal 8 Achsen)	1 Modax
•	1080 von 2 bis 16 Kopplern	1 Modax
•	1080 von 2 bis 27 Kopplern	2 Modax

Konfiguration mit Erweiterungsgehäusen (Modax)

3 Modax


Verfügbare Technologien für Num Power 1060 und 1080


•	Fräsen	M
•	Drehen	Т
•	Zylinderschleifen	GC
•	Flachschleifen	GS
•	Holzbearbeitung	W

Kenndaten

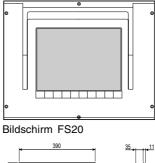
•	versorgungsspannung	24 VDC
	+2	20% ; -15%
•	Maximale Leistung der Zentraleinheit	70 W
•	Maximale Leistung eines Modax	45 W
•	Schutzart	IP20
	D 1 11 1 11 11 11 11 11 11 11 11 11 11 1	

Relative Luftfeuchtigkeit ohne Kondensation von 5 bis 95% Lagertemperatur von -25° bis +70° C 5° bis 55° Betriebstemperatur Abmessungen in mm (L x H x P) 110 x 404 x 285

Technische Daten

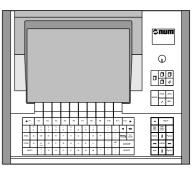
Bedienfelder

Num bietet, passend für jede Maschine, eine breite Palette von Bedienfeldern an:

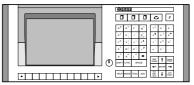

- · Kompaktbedienfelder mit CRT-Bildschirm.
- Bedienfelder mit CRT-Bildschirm oder LCD-Anzeige in TFT Technologie.
- Industrie-PC-Bedienfeld mit Qwerty-Tastatur.
- · Personalisierbare Maschinenbedienfelder.
- Tragbares Bedienfeld.
- Spezifische Bedienfelder für die werkstattorientierten CNCs.

Die neue Generation der Bedienfelder mit TFT-Flachbildschirm, Bedienfeld FS20 und PC-Bedienfeld FTP41 in Verbindung mit dem Maschinenbedienfeld MP02 zeichnet sich besonders durch ihre geringen Abmessungen und eine optimale Anpassung an die Maschinen aus.

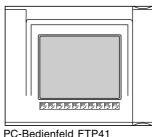
Die Bedienfelder mit CRT-Bildschirm (MP20/CP20 und CP30) sind zur Kombination mit dem Maschinenbedienfeld MP01 bestimmt.


Bedienfelder

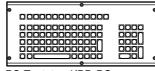
Bedienfelder mit TFT-Bildschirm



Bedienfelder mit CRT-Bildschirm

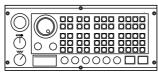


Bedienfeld CP30

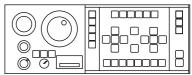


Bedienfelder MP20/CP20

PC-Bedienfeld



PC-Bedienfeld FTP41



PC-Tastatur KBD-PC

Maschinenbedienfeld

Maschinenbedienfeld MP02

Maschinenbedienfeld MP01

Technische Daten

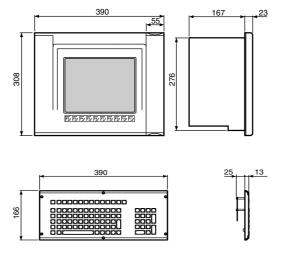
Bedienfelder

PC-Bedienfeld FTP41

Das PC-Bedienfeld ist für alle CNC Num Power ohne Karte zur Bedienfeldkommunikation verfügbar und ist die ideale Entwicklungsplattform für alle Bedieneroberflächen und alle Applikationen.

Es besteht aus folgenden Elementen:

- Industrie-PC FTP41 mit
 - LCD-Farbbildschirm 10,4", TFT.
 - Intel Pentium Prozessor oder gleichwertig.
 - RAM-Speicher erweiterbar auf 256 MB.
 - Diskettenlaufwerk auf der Vorderseite.
 - Festplatte mit mindestens 1,66 GB.
- Sechs Steckplätze für Erweiterungskarten ISA
- Windows 98 oder 2000 und das Softwarepaket für PC-Bedienfeld mit den erforderlichen Hilfsmitteln zur Integration der Maschine (siehe Seite 4/19).
- Tastatur KBD-PC: Qwerty PC-Tastatur (Schutzart IP54) mit USB-Schnittstelle und 2 m Anschlußkabel.


Kenndaten

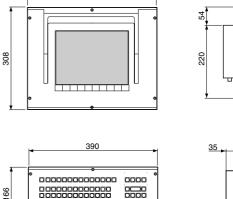
- · Versorgungsspannung 115 oder 230 VDC Aufgenommene Leistung
 - Abmessungen (L x H x T) in mm PC 390 x 308 x 190 Tastatur 390 x 166 x 40 Gewicht 10 kg PC
- Tastatur Relative Luftfeuchtigkeit ohne Kondensation
- Lagertemperatur
- Betriebstemperatur

+10%; -15% 200 W

> 1,7 kg 10 bis 90%

-20° bis +60° C 5° bis 55°

Bedienfeld FS20


- Für eine erhöhte Ergonomie besteht dieses Bedienfeld aus zwei separaten Elementen:
 - LCD-Bildschirm FS20 10,4" TFT, der eine ausgezeichnete Lesbarkeit (Helligkeit und Kontrast) bietet:
 - Qwerty CNC-Tastatur KBD30 mit zusätzlichen Tasten für die CNC-Funktionen.
- Die geringe Dicke und die Schutzart IP54 auf der Vorderseite ermöglichen die direkte Montage auf der Maschine.
- Die Funktionen sind identisch mit dem Bedienfeld CP30 (gleiche Tasten).
- FS20 kann mit den CNC-Steuerungen Num Power 1040, 1050, 1060 und 1080 (siehe Seite 2/6) mit Bedienfeldkommunikation kombiniert werden.
- Kompatibilität mit der Multiplex-Funktion (mehrere CNC oder mehrere Bedienfelder): bitte bei uns anfragen.

Caractéristiques

- 24 VDC · Versorgungsspannung +20%; -15%
- · Aufgenommene Leistung (Bildschirm) 50 W
- Abmessungen (L x H x T) in mm

390 x 308 x 87 Bildschirm Tastatur 390 x 166 x 50

- Gewicht 4,2 kg Bildschirm **Tastatur** 1,7 kg Schutzart IP54
- Relative Luftfeuchtigkeit ohne Kondensation 10 bis 90%
- -20° à +60° C Lagertemperatur Betriebstemperatur 0° bis 50°

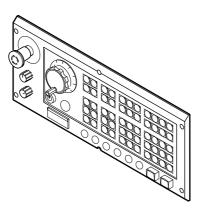
390

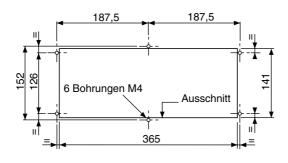
32.2

Technische Daten

Bedienfelder

Maschinenbedienfeld MP02


Das Maschinenbedienfeld MP02 dient zur Steuerung von manuellen Bewegungen, zum Starten der Produktion sowie für Eingriffe während der Bearbeitung.


Das MP02 besitzt das gleiche Design wie die Bedienfelder FS20 und FTP41 und besteht aus folgenden Flementen:

- 55 beschriftbare Folientasten mit LED-Kontrollampe,
- Zwei Potentiometer für Vorschub und Spindeldrehzahl,
- Ein Handrad in Option (Best.-Nr. 081 021),
- · Ein Not-Aus-Taster,
- Ein Schlüsselschalter mit zwei Stellungen es kann ein zweiter Schalter nachgerüstet werden,
- Zwei Tasten für Zyklus und NC-Halt mit Kontrollampe,
- Sechs Plätze für zusätzliche Tasten oder Schalter.
 Das MP02 wird über Glasfaser an der CNC angeschlossen.

Kenndaten

- Nennspannung (externe Stromversorgung) 24 VDC +20%; -15%
- Mindest-/Höchstwerte 19 V bis 30 V
- Aufgenommene Leistung mit Verwendung der Ausgänge
 40 W maximum 5 W maximum
- Maximalstrom
 Maximale Entfernung vom CNC-Rack
 40 m
- Maximale Entfernung vom CNC-Rack
 Cowieht
- Gewicht
 Ohne Handrad
 Handrad
 0,25 kg
- Abmessungen (L x H x T) 390 x 166 x 60 mm

Tragbares Bedienfeld POP

Das tragbare Bedienfeld ermöglicht mobile Operationen im Umfeld der Anlage.

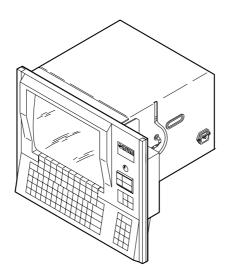
- Es vereint die Funktionen eines normalen Bedienfeldes und eines Maschinenbedienfeldes und wird bei der Programmierung (Teach-In, PROCAM oder ISO), beim Einrichten und in der Produktion verwendet.
- An der Front kann eine PC-Standardtastatur (Best.-Nr. 000 248) angeschlossen werden.
- Es kann bei allen Systemen mit Bedienfeldkommunikation verwendet werden.
- · Nicht kompatibel mit dem Multiplex-Modul.

Kenndaten

- 6"-LCD-Bildschirm TFT
- 2 Zustimmtasten mit 3 Stellungen
- Not-Aus Taster mit Doppelkontakt
- · Einschalttaste mit Kontrollampe
- Vorschubpotentiometer
- 18 frei programmierbare Tasten
- · Editor für Teileprogramme
- Anschluss für eine PC-Tastatur
- Versorgungsspannung
 24 VDC
 +20%; -15%
- Aufgenommene Leistung 15 W
- Abmessungen (L x H x T) 310 x 240 x 87 mm
- Gewicht (ohne Kabel)
 1,8 kg
 Varhindungskahel Redienfeld/Schaltschrank 10 m
- Verbindungskabel Bedienfeld/Schaltschrank 10 m (mitgeliefert)
- Verbindungskabel Schaltschrank/CNC 5 m (mitgeliefert)

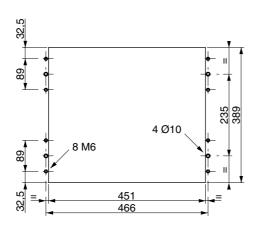
PC-Tastatur QWERTY

- PC-Tastatur Standard IP54 (Vorderseite), IP20 (Rückseite)
- Kann in Verbindung mit dem Kompaktbedienfeld und mit dem tragbaren Bedienfeld verwendet werden
- Abmessungen (L x H x T)



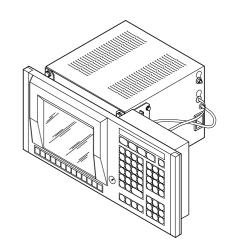
Technische Daten

Bedienfelder


Bedienfeld CP30

- Dieses Bedienfeld besitzt einen 14"-Farbbildschirm und eine komplette Qwerty-Tastatur, was eine ausgezeichnete Arbeitsergonomie gewährleistet.
- Es kann mit folgenden Produkten verwendet werden: Num Power 1040, 1050, 1060 und 1080 mit Bedienfeldkommunikation.
- Mit dem Maschinenbedienfeld MP01kompatibel.
- Mit der Multiplex-Funktion kompatibel, siehe Seite 3/11.

Kenndaten

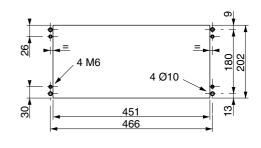

Versorgungsspannung
 Aufgenommene Leistung
 Abmessungen (L x H x T)
 Gewicht
 Maximale Entfernung zum CNC-Rack
 230 VAC; 50/60 Hz
 483 x 399 x 400 mm
 16,5 Kg
 483 x 399 x 400 mm
 16,5 Kg
 40 m

Bedienfeld MP20 und CP20

Dieses Bedienfeld mit geringen Abmessungen verfügt über Doppelfunktionen, die über die Taste SHIFT zugänglich sind, was eine gute Ergonomie gewährleistet.

- 9"-Monochrom-Bildschirm (MP20) oder 10"-Farbbildschirm (CP20)
- Es kann mit folgenden Produkten verwendet werden: Num Power 1040, 1050, 1060 und 1080 mit Bedienfeldkommunikation.
- Mit dem Maschinenbedienfeld MP01 kompatibel.
- Mit der Multiplex-Funktion kompatibel, siehe Seite 3/11.

Kenndaten


- Versorgungsspannung
 230 VAC ; 50/60 Hz
- Aufgenommene Leistung des 9"-Bildschirms 30 W
- Aufgenommene Leistung des 10"-Bildschirms 60 W

Abmessungen (L x H x T) in mm

• Gewicht 10,7 Kg

Maximale Entfernung zum CNC-Rack

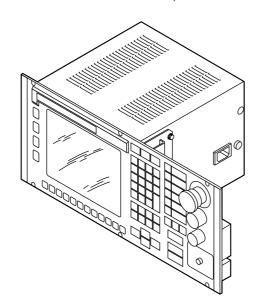
40 m

Gemeinsame Daten

Versorgungsspannung
 230 V
 +10%; -15%

• Relative Luftfeuchtigkeit ohne Kondensation

 $\begin{array}{lll} \mbox{Kondensation} & 5 \mbox{ bis } 85\% \\ \mbox{Lagertemperatur} & -25^{\circ} \mbox{ bis } +70^{\circ} \\ \mbox{Betriebstemperatur} & 5^{\circ} \mbox{ bis } 55^{\circ} \\ \end{array}$


Technische Daten

Bedienfelder

Kompaktbedienfelder MP10 und CP10

Sie werden zur Steuerung von Maschinen verwendet.

- In Verbindung mit der Qwerty PC-Tastatur (Best.-Nr. C... 000 248) bilden sie eine homogene Einheit für die Programmierung und den Betrieb der Maschine.
- Sie existieren in zwei Ausführungen, mit 9"-Monochrom-Bildschirm (MP10) oder mit 10"-Farbbildschirm (CP10).
- Sie können mit folgenden Produkten verwendet werden: Num Power 1020, 1040, 1050, 1060 und 1080 mit Bedienfeldkommunikation.
- Nicht verwendbar mit der Multiplex-Funktion (mehrere CNC oder mehrere Bedienfelder).

- Versorgungsspannung
 230 VAC; 50/60 Hz
 Aufgenommene Leistung des 9"-Bildschirms
 30 W
- Aufgenommene Leistung des 10"-Bildschirms 60 W
- Adigenommene Leistung des 10 -bildschilms 60 W
 Abmessungen (L x H x T) in mm
- Gewicht
 Maximale Entfernung des CNC-Racks
 11 Kg
 10 m
 - 6 M4 211,5 211,5 211,5 211,5 211,5

Maschinenbedienfeld MP01 und E/A-Erweiterung

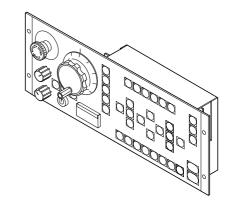
Ideale Ergänzung zu den CNC-Bedienfeldern MP20, CP20 und CP30. Diese Steuertafel ermöglicht:

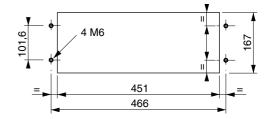
- Das Verfahren der Achsen
- Start/Stop
- Eingriffe während der Produktion.

Zusammensetzung

- Frei programmierbare Tasten
- Not-Aus Taster
- 2 Potentiometer
- 1 Handrad in Option (Best.-Nr. C... 081 050)
- 1 Schlüsselschalter mit 3 Stellungen
- 1 Anschluss für serielle Verbindung
- SPS-Programm
- 1 Karte mit 32 Eingängen/24 Ausgängen (Option) kann als Erweiterung geliefert und hinten an der Steuertafel befestigt werden.

Kenndaten


 Versorgungsspannung 	24 VDC
(externe Stromversorgung)	+10%;-15%
Toleranz min./max.	17 bis 30 V
Aufgenommene Leistung	3.8 W


Aufgenommene Leistung
Stromaufnahme mit E/A-Erweiterung
Maximale Entfernung des CNC-Racks
50 m

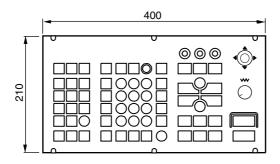
Anschluss an den CNC-Bus über LWL

 Abmessungen (L x H x T) in mm ohne Erweiterung
 483 x 177 x 80 mit Erweiterung
 483 x 177 x 122

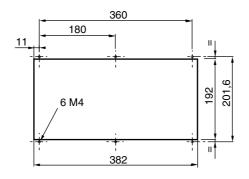
Gewicht
ohne Handrad 2,2 Kg
Handrad (Option) 0,6 Kg
Erweiterung 32 E/24 A (Option) 0,3 Kg

Technische Daten

Bedienfelder

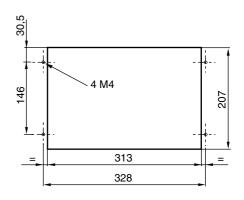

Num Mplus und Num Tplus

Die werkstattorientierten Steuerungen für Fräsen (NUM M*plus*) und Drehen (NUM T*plus*) vereinen die Flexibilität und den Komfort der herkömmlichen Bearbeitung mit Präzision und Produktivität der CNC-Technik.

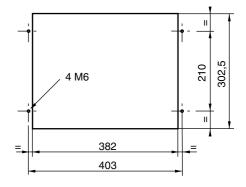

Diese Steuerungen basieren auf einer Num Power 1040 mit spezifischer Software und:

- einer spezifischen Tastatur für das Teach-In, die alle Tasten zur Betriebsartenwahl, Dateneingabe und Steuerung der Maschine besitzt;
- einem separaten Bildschirm, wahlweise 9"-Monochrom-Bildschirm (MS20), 10"-Farbbildschirm (CS20) oder 14"-Farbbildschirm (CS30).

Tastaturen Num Mplus und Tplus



Abmessungen (L x H x P) 400 x 210 x 130 mm



Bildschirme Num Mplus/Tplus

Ausschnitt für die Montage der Bildschirme 9"-Monochrom (MS20) und 10"-Farbe (CS20).

Ausschnitt für die Montage des 14"-Farbbildschirms (CS30).

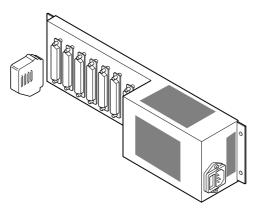
Technische Daten

Multiplex-Modul für Bedienfelder mit CRT-Bildschirm und zugehörige Konfigurationen

Multiplex-Modul

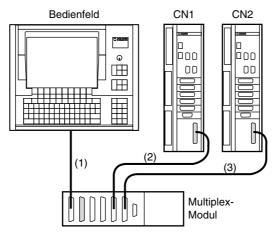
Das Multiplex-Modul ermöglicht:

- Die Installation mehrerer Bedienfelder an der gleichen Maschine (Konfiguration mit mehreren Bedienfeldern)
- Die Steuerung mehrerer Maschinen über ein Bedienfeld (Konfiguration mit mehreren CNC).


Diese Funktionen sind besonders für flexible Fertigungszellen interessant und besonders den Bedienfeldern MP20, CP20 und CP30 vorbehalten.

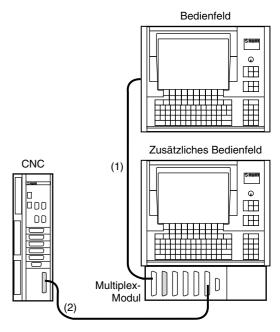
Dieses Modul wird hinten am CNC-Bedienfeld oder aussen montiert.

(LCD-Bedienfeld, bitte bei uns anfragen)


Kenndaten

Versorgungsspannung
 Aufgenommene Leistung
 Abmessungen (L x H x T)
 Gewicht
 360 x 102 x 69 mm
 1,560 kg

Konfiguration mit mehreren CNC


2 bis 4 CNC-Steuerungen können an ein Bedienfeld angeschlossen werden.

(1) Kabel 0,5 m, mit dem Multiplex-Modul geliefert.(2) (3) Anschlusskabel der Bedienfelder an die CNC, siehe Seite 2/9.

Konfiguration mit mehreren Bedienfeldern

2 bis 3 Bedienfelder können an eine CNC-Steuerung angeschlossen werden.

(1) (2) Anschlusskabel der Bedienfelder an die CNC, siehe Seite 2/9.

Maximale Länge der Kabel (1) + (2): 40 m.

Das zusätzliche Bedienfeld enthält das Multiplex-Modul. Dieses kann auf der Rückseite des zusätzlichen Bedienfeldes oder außerhalb montiert werden. Wenn das Multiplex-Modul in der Nähe der CNC-Zentraleinheit angebracht wird, müssen zwei Verbindungen vorgesehen werden:

- die eine zwischen der CNC-Zentraleinheit und dem Multiplex-Modul
- die andere zwischen dem Multiplex-Modul und den Bedienfeldern (maximale Länge: 40 m für jede der beiden Verbindungen).

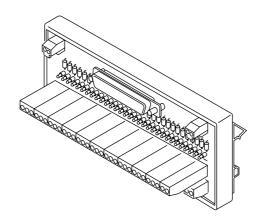
Technische Daten

Dezentrale E/A-Module

Schnittstellenmodule

Sie erleichtern die Verdrahtung der E/A-Karten und der Maschinenelemente.

Konfektionierte Kabel ermöglichen die Anpassung an die verschiedenen Typen von E/A-Karten.


Schnittstellenmodule mit 32 Eingängen

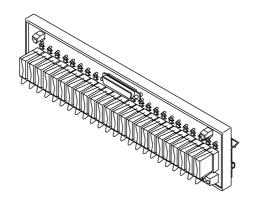
 Aufgenommene Leistung (alle Eingänge geschaltet) 24 W

Abmessungen (L x H x T)

183 x 86 x 60 mm 0,3 Kg

Gewicht

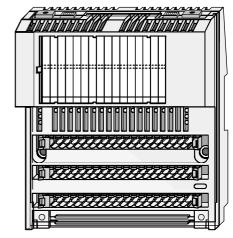
Relaismodule mit 24 Ausgängen


Aufgenommene Leistung 19,2 W (alle Ausgänge geschaltet)

Abmessungen (L x H x T)

376 x 98 x 69 mm

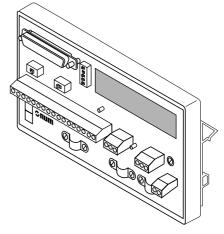
1,05 Kg


Gewicht

Dezentrale E/A-Module

Diese Module ergänzen die Palette der E/A-Karten für die CNC Num Power. Sie existieren in vier Ausführungen:

- Modul mit 16 Eingängen 24 V=
- Modul mit 16 Eingängen 24 V= / 16 Ausgängen 24 V= 0,5 A
- Modul mit 8 Eingängen/8 Relaisausgängen 2 A.
- Modul mit 4 analogen Ein-/2 analogen Ausgängen.

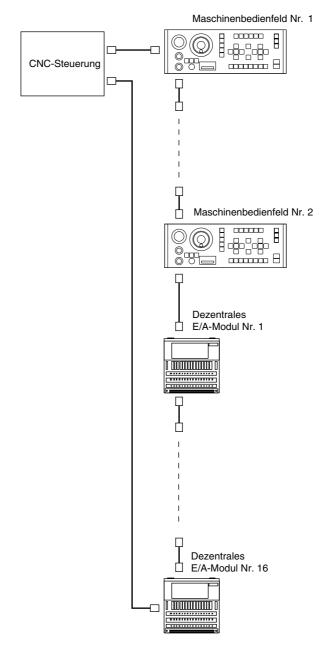


- Abmessungen (L x H x T) 125 x 142 x 60 mm
- Die Verkabelung wird durch Steckklemmen und Klemmleisten erleichtert.
- Der Anschluss am Basis-Rack erfolgt über Glasfaser.

Achsanschlussmodul

Um die Verdrahtung zu erleichtern, ist dieses Anschlussmodul den analogen Achskarten zugeordnet. Es ermöglicht die Aufteilung des am Modul ankommenden Kabels in drei separate Kabel.

- Sollwert zum Antriebsverstärker
- Gebersignal
- Referenzpunktschalter



Abmessungen (L x H x T)

160 x 86 x 53 mm

Technische Daten

Kabelplan der durch LWL verbundenen Elemente

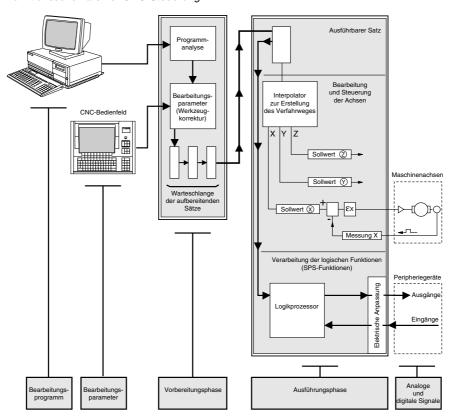
Die Anzahl der erforderlichen LWL-Kabel entspricht der Anzahl der Elemente + 1. Die maximale Länge zwischen zwei hintereinander geschalteten Elementen beträgt 40 Meter.

Funktionsbeschreibungen

Inhaltsverzeichnis

Aufbau der CNC-Steuerung	Seite
Funktionsschema der CNC-Steuerung	4/3
Ansteuerungen	
Lageregelung, analog	4/4
Digitale Lageregelung DISC NT	4/4
Kontrolle der Beschleunigung und des Abbremsens	4/4
Look-Ahead	4/4
Achsfunktionen	
CNC-Achsen, SPS-Achsen, Linear- und Rundachsen, Positionierachsen und interpolierte Achsen	4/5
Interpolation von 5 bis 9 Achsen, Helixinterpolation	4/5
Polynominterpolation, Spline, Polynomzuginterpolation	4/6
Interpolation NURBS	4/6
Achsabgleich und Inter-Achs-Korrektur	4/6
Duplizierte und synchronisierte Achsen (Gantry)	4/6
Überwachungseinrichtung für synchronisierte Achsen	4/6
Mehrere Gruppen/Kanäle	4/6
Schräge Achsen	4/7
Messsystem	4/7
Losekompensation, Temperaturkompensation Parametrierbare Präzision	4/7 4/7
	4/7
Vermassung Zoll/mm Funktion Ball-bar	4/7
- unknon ban-ban	
Spindelfunktionen	
Drehzahlsteuerung	4/8
Steuerung und Messung	4/8
Automatische Bestimmung der Getriebestufe	4/8
Konstante Schnittgeschwindigkeit	4/8
Gewindeschneiden	4/8
Spindelindexierung C. Askas und Umusandlung der Kaszdinstansustans	4/8
C-Achse und Umwandlung der Koordinatensysteme	4/9 4/9
Spindelsynchronisation Gewindebohren ohne Ausgleichsfutter	4/9
CDC Funktioner	
SPS-Funktionen Bereich für Datenaustausch CNC/SPS	4/10
SPS-Speicher	4/10
Programmierung in C, in Ladder	4/10
Ein-/Ausgänge	4/11
Werkzeugverwaltung	
Wahl der Werkzeugachse	4/12
Korrekturschalter, dynamische Werkzeugkorrektur	4/12
Werkzeugkorrektur beim Drehen	4/12
Werkzeugkorrektur beim Fräsen	4/13
3D-Werkzeugkorrektur	4/13
Bearbeitungszyklen	
Fräs-, Taschen-, Messzyklen für Fräsmaschinen	4/14
Bearbeitung in der schiefen Ebene	4/14
RTCP	4/15
N/M Auto	4/15
Hochgeschwindigkeitsbearbeitung	4/15
Kombinierte Maschine	4/15
Dreh- und Messzyklen für Drehmaschine	4/16
Vieleckbearbeitung	4/16
Personalisierung der Zyklen	4/16

Funktionsbeschreibungen


Inhaltsverzeichnis

Programmunterbrechung und Umleitung		
Messwerterfassung	4/17	
Zurückfahren auf der Kontur	4/17	
Notrückzug	4/17	
Bedieneroberfläche/Bedienfelder		
CNC-Bedienfeld, tragbares Bedienfeld, Kompaktbedienfeld, Maschinenbedienfeld	4/18	
PC-Bedienfeld, Bedienfelder Num Mplus und Num Tplus	4/19	
Softwarepaket für PC-Bedienfeld	4/19	
QWERTY PC - Tastatur für Kompaktbedienfeld und tragbares Bedienfeld	4/19	
Teileprogrammierung		
Speicher für Teileprogramm und residente Makrobefehle	4/20	
Programmeingabe am Bedienfeld	4/20	
Einlesen von Programmen	4/20	
Änderung der Programme im Speicher	4/20	
Wahl des Vermassungssystems: NPV und NPV3	4/2	
Dynamischer Software-Endschalter	4/2	
Hauptfunktionen	4/2	
Format - ISO oder EIA	4/2 4/2	
Unterprogramme Parametrierte Programmierung, strukturierte Programmierung	4/22	
Erstellen einer Tabelle zum Ablegen der Profile, Transfer der aktiven Werte	4/2:	
Massstabsfaktor (Scaling), Winkelverschiebung	4/2:	
Aussermittigkeit der Aufspannung	4/23	
Kontuzugprogrammierung (PGP)	4/23	
PROFIL	4/23	
2D- und 3D-Grafik	4/23	
Bildschirmausdruck	4/2:	
Maschinenmeldungen	4/2	
CNC-Meldungen	4/2	
Interaktive Programmierung PROCAM	4/24	
NUMAFORM Num M <i>plus</i> und T <i>plus</i>	4/24 4/25	
- Null Mplus und Tplus	4/2	
Integration und Personalisierung der Systeme		
Eine offene Struktur für den Integrator	4/20	
Landessprachen der Systeme	4/20	
PC-Funktionen - PC-Bedienfelder	4/20	
PROCAM-Interpreter Bildschirmanwahl	4/2° 4/2°	
CNC-residente Dienstprogramme	4/2	
Dynamische Operatoren	4/2	
C-Compiler	4/2	
CD-Rom 32 Bit Hilfsmittel	4/2	
MMITool	4/28	
PCToolKit	4/28	
PLCTool	4/28	
SETTool	4/28	
PERSOTool	4/28	
NUMBackUp/Edit Part Program	4/28	
Kommunikation		
Serielle Schnittstellen	4/2	
Datenaustausch zwischen Prozessoren	4/29	
Anschluss an ein Netz Uni-Telway	4/29	
Anschluss an ein Netz Fipway	4/29	

Funktionsbeschreibungen

Aufbau der CNC-Steuerung

Funktionsschema einer CNC-Steuerung

Eingänge

Die CNC empfängt in ihrer Zentraleinheit folgende Daten:

- Das Bearbeitungsprogramm des Werkstücks;
- Die Bearbeitungsparameter, d.h.:
- Die Werkzeugkorrekturen;
- Die Tabellen mit den parametrierten Werten des Bearbeitungsprogramms;
- Die von den an der Maschine angeschlossenen Gebern kommenden, elektrischen Signale der Drehzahl- und Positionsmessung der Spindeln und der Achsen:
- Die logischen Signale für den Zustand der Peripheriegeräte.

Datenvorbereitung

Nach Eingabe der Daten übernimmt die CNC folgende Schritte:

- Analyse des Bearbeitungsprogramms;
- Berücksichtigung der Bearbeitungsparameter, um die analysierten Daten zu ändern;
- Einreihung der aufbearbeitenden Informationssätze in die Warteschlange, um die Kontinuität der Bearbeitungsbewegungen zu gewährleisten.

Datenverarbeitung

Die in der letzten Stufe der Datenspeicherung enthaltenen Informationen dienen zur Verarbeitung und Kontrolle der Achsen und Spindeln, sowie zur Steuerung der Hilfsorgane der Maschine.

Die Verarbeitung und Kontrolle der Achsen erfolgt über Interpolatoren, die für die Verteilung der Inkremente auf die gesamte Achse sorgen, um den Verfahrweg einzuhalten.

Die von den Interpolatoren gelieferten Inkremente (CNC-Position) werden mit den von den Gebern gelieferten Messinkrementen (Istposition) verglichen. Die Differenz, der sogenannte Schleppfehler, beeinflusst das Steuersignal des Antriebsmotors der Achse.

Die Ansteuerung der Hilfsfunktionen betrifft im allgemeinen:

- Kühlmittelsteuerung
- Definition der Drehrichtung, Abschalten und Getriebestufe der Spindel
- Steuerung von Werkzeugmagazinen, Werkstückhandhabungen, Manipulatoren usw.

Diese maschinenspezifischen Funktionen werden von der SPS in sequentieller Logik verarbeitet.

Analoge und digitale Signale

Das Ergebnis der Datenverarbeitung steht in Form von Signalen zur Verfügung:

- Steuersignale der analogen oder digitalen Achsen
- Logische oder analoge Signale der Peripheriegeräte.

Das System kann auch logische oder analoge Signale von externen Peripheriegeräten empfangen.

Funktionsbeschreibungen

Ansteuerungen

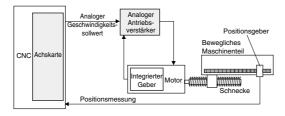
Lageregelung

Die Hauptfunktion einer CNC ist die ständige Kontrolle der Verfahrwege der verschiedenen Bewegungen der Maschine in Geschwindigkeit und Position.

Jede Verfahrachse wird somit über eine geschlossene Lageregelung angesteuert, d.h. die Istposition des beweglichen Maschinenteils wird kontinuierlich gemessen und mit der von der CNC gelieferten Eingangsgrösse (oder Sollposition) verglichen, um die neue, programmierte Position zu erreichen.

Sobald die Abweichung zwischen den beiden Messungen gleich Null wird, bleibt das bewegliche Maschinenteil stehen.

Das Verfahren des Tisches oder des Werkzeugs von einem Punkt zu einem anderen erfordert die Kenntnis folgender Daten:

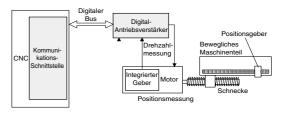

- Die Achse (X, Y, Z...), auf der das Verfahren ausgeführt werden soll
- Die Koordinaten des Zielpunktes
- Die Verfahrrichtung (+ oder -)
- Die Verfahrgeschwindigkeit der Achse.

Analoge Ansteuerungen

Der Geschwindigkeitsregelkreis ist auf dem Eingang des Antriebsverstärkers verkabelt und wird von ihm verarbeitet.

Der Steuerregelkreis wird teils von der CNC, die den Messwert aufnimmt, und teils vom Antriebsverstärker verarbeitet, der die von der CNC gelieferte analoge Spannung in Strom zur Steuerung des Motors umwandelt.

Analoge Ansteuerung (Abb.1)



Digitale Ansteuerungen DISC NT (Num Power 1050)

Die Kopplung zwischen NUM 1050 und DISC NT erfolgt über einen digitalen Hochleistungsbus.

Diese Struktur ist für höchste Ansprüche an Dynamik und Präzision ausgelegt.

(Abb. 2)

Kontrolle der Beschleunigung und des Abbremsens

Diese Funktion ermöglicht die separate Regelung von Beschleunigungen bei Vorschub oder im Eilgang. Zur Schonung der Mechanik, insbesondere bei schnellen Maschinen, kann die Rampe mit Begrenzung der Ableitung des Ruckes (Jerk) eingesetzt werden. Bei Maschinen für Hochgeschwindigkeitsbearbeitung ist diese Funktion unbedingt erforderlich.

Look-Ahead

Diese Funktion sorgt für eine Voranalyse und optimiert das Fahrverhalten über n Sätze in Bezug auf Geschwindigkeit, Beschleunigung und Präzision.

Funktionsbeschreibungen

Achsfunktionen

CNC-Achsen

Best.-Nr. C...000 450: Digitale Achsen DISC NT für CNC Num Power 1050.

Best.-Nr. C...000 373: Zusätzliche, analoge Achsen mit TTL-Messsystem 5 V, in Bezug auf die Grundausführung.

Hierbei handelt es sich um Achsen, die direkt von der CNC-Software über ein im RAM-Speicher geladenes Teileprogramm (oder in PPP-Mode, wenn das Teileprogramm sehr gross ist, beispielsweise von einem CAD/CAM-System erstellt) gesteuert wird. Das Verfahren erfolgt in einem kartesischen Koordinatensystem X, Y, Z, in dem auch Nebenachsen (U, V, W) verwendet werden können. Diese Nebenachsen können unabhängige Achsen oder Achspaare (Trägerachse/geführte Achse) sein.

Den drei Linearachsen sind drei Rundachsen Modulo 360° A, B und C zugeordnet.

SPS-Achsen

Best.-Nr. C...000 451: Digitale Achsen DISC NT für CNC Num Power 1050.

Best.-Nr. C...000 534: Analoge Achsen mit TTL-Messsystem 5 V.

Sie dienen zur Steuerung der Hilfsachsen der Maschine (Werkzeugwechsler, Werkstückhandhabung, Manipulatoren usw.).

Die Hardware, die Anschlüsse, der Datenaustauschbereich CNC/SPS und die Inbetriebnahme sind gemeinsam mit denen der CNC-Achsen.

Diese Achsen können sich in einer oder mehreren unabhängigen Gruppen befinden.

Die ISO-Programme zu deren Steuerung (9998._) müssen im geschützten, nicht direkt veränderbaren Speicherbereich gespeichert werden. Die Syntax zur Programmierung ist die gleiche wie für CNC-Achsen (Positionierung, Interpolation usw.).

Die Funktionen Zyklus, NC-Halt, Betriebsarten (Einzelsatz oder Automatik) sind für jede Gruppe unabhängig und werden von der SPS verarbeitet.

Linear- oder Rundachsen

Die Steuerung der Achsen mit geschlossener Lageregelung gewährleistet:

- Die Steuerung der Achsen in Position und Verfahrweg mit programmiertem Vorschub, der von 0 bis 120% verändert werden kann
- Die Kontrolle der Beschleunigung und des Abbremsens mit der Möglichkeit der Verwendung der progressiven Beschleunigung zur Schonung der Mechanik bei schnellen Maschinen
- Die Losekompensation
- Die Kontrolle der Signale der Inkrementalgeber:

 Massung durch shoolute Inkrementalgeber:
 - Messung durch absolute Inkrementalzählung über SSI-Verbindung
- Halbabsolute Messung, die ein Referenzpunktanfahren nach dem Einschalten erfordert.

Die interne Auflösung des Systems ist allen Linearachsen gemeinsam und im Standard auf 1 Mikrometer eingestellt.

Die interne Auflösung des Systems für Rundachsen beträgt 0,0001 Grad.

Diese Werte können parametriert werden, um eine geforderte Präzision und einen vorgegebenen Vorschub zu berücksichtigen.

Die Linearachsen werden in Mikrometer auf einem maximalen Verfahrweg von 100 m programmiert.

Die Rundachsen werden auf 360° programmiert (Modulo 360).

Positionierachsen und interpolierte Achsen

Beim Positionieren wird der programmierte Punkt durch ein Verfahren im Eilgang ohne Berücksichtigung des Verfahrweges erreicht. Es wird nur die Präzision des Verfahrens berücksichtigt.

Bei Interpolation wird der programmierte Punkt durch Ausführung eines linearen oder kreisförmigen Verfahrweges im oder entgegen dem Uhrzeigersinn mit programmiertem Vorschub erreicht. In diesem Fall wird die Präzision der zwischen Start- und Zielpunkt ausgeführten Kontur berücksichtigt.

Interpolation von 5 bis 9 Achsen

Best.-Nr. C...000 531

Bei Interpolation starten die programmierten Achsen gleichzeitig, führen den Verfahrweg aus und bleiben gleichzeitig stehen. In der Grundausführung sind 4 Achsen gleichzeitig interpolierbar. Diese Option ermöglicht eine Erweiterung der Interpolation auf 5 bis 9 Achsen.

Linear- und Kreisinterpolation

Linearinterpolation (G01)

Der programmierte Punkt wird durch Ausführung eines linearen Verfahrweges mit programmiertem Vorschub erreicht.

Der Verfahrweg ist die Resultierende aller im Satz programmierten Verfahrwege der Achsen.

Kreisinterpolation (G02), (G03)

Der Zielpunkt wird durch Ausführung eines kreisförmigen Verfahrweges erreicht.

G02: Kreisinterpolation im Uhrzeigersinn.

G03: Kreisinterpolation entgegen dem Uhrzeigersinn.

Helixinterpolation

Bei kombinierter kreisförmiger und linearer Bearbeitung ermöglicht die Helixinterpolation ein schraubenförmiges Verfahren der Werkzeugachse mit konstanter Steigung.

Die Helixinterpolation kann in den drei Ebenen ausgeführt werden und gilt sowohl für Haupt- als auch für Nebenachsen.

Funktionsbeschreibungen

Achsfunktionen

Polynominterpolation

Best.-Nr. C...000 499

Diese Interpolation ermöglicht die Erstellung von Verfahrwegen für die Werkzeugmitte von Vielecken mit Winkel kleiner oder gleich 5°.

Diese Verfahrwege sind kontinuierliche und einwandfrei geglättete Kurven: es gibt keine Facetten. Alle berechneten Punkte befinden sich auf der Kurve.

Diese Interpolation gilt nicht für Rundachsen. Auch die Werkzeugkorrektur und das Zurückfahren auf der Kontur können hier nicht eingesetzt werden.

Spline-Interpolation (G06, G48, G49)

Best.-Nr. C...000 518

Die Spline-Interpolation ist eine mathematische Methode zur Glättung von Kurven.

Die Kurven Spline sind kontinuierliche Kurven, die eine Reihe von angegebenen Festpunkten miteinander verbinden.

Die Spline-Interpolation gewährleistet die Kontinuität der Tangenz und Beschleunigungskonstanten an jedem der auf dem programmierten Verfahrweg angegebenen Punkte.

Spline-Interpolation mit 3D-Kurvenglättung (G104)

Best.-Nr. C999 081 706

Diese Interpolation basiert auf der Polynominterpolation und bietet dem Programmierer die Möglichkeit, lediglich durch Definition von Zwischenpositionen, beliebige Kurven im Raum zu definieren.

Interpolation NURBS

Best.-Nr. C...000 426

Bei Hochgeschwindigkeitsbearbeitung wird die geometrische Kontinuität eine Notwendigkeit.

Die Kurven NURBS (Non Uniform Rational B-Spline) werden häufig bei CAD und seit kurzem auch auf den CNC verwendet. Es handelt sich hierbei um Kurven mit Polen, die eine Kontur in rationaler, parametrischer Form beschreiben und somit den Verlauf eines Profils mit komplexer Form bei minimaler Profilabweichung ermöglichen.

Achsabgleich und Inter-Achs-Korrektur

Best.-Nr. C...000 260

Achsabgleich (z. B. Spindelsteigungsfehler)

Diese interne Funktion korrigiert die Position der Achse entsprechend den Abweichungen der Kugelrollspindel, der Zahnstange oder des Massstabes (Eingabe von 2500 Punkten für alle Achsen).

Inter-Achs-Korrektur

Diese Funktion korrigiert den Positionssollwert einer Achse, entsprechend der Position einer anderen Achse.

Die Eingabe der Daten erfolgt in einer Tabelle.

Eine typische Applikation dieser Funktion ist die Kompensierung des Gewichts des "Spindelstocks" bei einer Fräsmaschine.

Duplizierte und synchronisierte Achsen (Gantry)

Best.-Nr. C...000 266

Diese Funktion gewährleistet die Kopplung einer oder mehrerer Achsen (sogenannte Nebenachsen in Bezug auf eine Hauptachse) entweder über Maschinenparameter (feste Kopplungen) oder durch Programmierung externer Parameter.

Diese Funktion gewährleistet auch die Synchronisierung der Hauptachse mit der Nebenachse (umfasst nicht die Steuerung der Achsen).

Multigruppenfunktion

Best.-Nr. C...000 371

Alle CNC-Achsen und Spindeln einer Maschine können bei der Installation anhand von Parametern in mehreren Gruppen oder mehreren Kanälen deklariert werden.

Das Bearbeitungsprogramm besteht aus unabhängigen Programmen (ein Programm pro Gruppe), die mit einer gemeinsamen Stammbezeichnung, gefolgt von der Gruppennummer, bestimmt werden.

Die in den Gruppen deklarierten Spindeln können mit diesen Programmen (%) gesteuert oder freigegeben und unabhängig werden.

Der Betrieb mit mehreren Kanälen kann dem mit mehreren CNC gleichgestellt werden.

Bei dieser Funktion sind die Befehle ZYKLUS, NC-HALT und RESET, sowie die Betriebsarten unabhängig für jeden Kanal.

Funktionsbeschreibungen

Achsfunktionen

Schräge Achsen

Best.-Nr. C...000 315

Diese Software-Funktion ändert die Ausgangskoordinaten der Interpolation.

Bei einer Dreh- oder Schleifmaschine können die Achsen X und Z rechtwinklig oder schräg sein. Die Neigung der Achse ist der Winkel, den die X-Achse mit der normalen Spindelachse Z bildet; dieser positive oder negative Winkel wird in 1/1000 Grad ausgedrückt.

In einem System mit mehreren Achsgruppen können alle Gruppen verschiedene Achsneigungen besitzen.

Messsysteme

Die Eingänge der Achskarten können an 2 Typen von Inkrementalgebern angeschlossen werden.

Halbabsolute Inkrementalgeber mit Referenzpunktanfahren

Jede Achse besitzt einen Messeingang, an dem die 4 Kanäle eines Inkrementalgebers angeschlossen werden. Diese Eingänge empfangen die komplementären Rechtecksignale der Codierer A, /A, B, /B, Signal Null, Signal /Null, mit einer Amplitude von 5 Volt.

Die Signale A und B, sowie deren Komplement werden um 90° verschoben. Es werden die ansteigenden und abfallenden Flanken jedes Kanals berücksichtigt, was eine vierfache Präzision des Codierers gewährleistet. Die Messeingänge berücksichtigen auch die Verkabelung der Referenzpunktschalter. Diese Messung durch Inkrementzählung erfordert ein Referenzpunktanfahren nach einem Abschalten.

Inkrementale Absolutgeber mit serieller SSI-Verbindung

Messung einer in einem Datensatz DATA, /DATA, BCD oder binär codierten Position im Format 12 bis 31 Bit (je nach Auflösung des verwendeten SSI-Gebers) über serielle Synchronverbindung (RS 422). Die Synchronisierung des Datenaustauschs zwischen Geber und Achsmodul erfolgt über einen Taktgeber (Signale CLK, /CLK, die von der Achskarte erstellt werden).

Diese Art der Messung gewährleistet einen Zeitgewinn und eine Vereinfachung der Prozeduren zum Wiedereinschalten der Maschine: der Einsatz der Absolutmessung erfordert keinerlei Mehrkosten bei der Integration der CNC. Nach einem Abschalten kann sofort wieder gestartet werden, wobei das Werkzeug leicht freigefahren werden kann, selbst in einem durch RTCP oder durch die schiefe Ebene umgewandelten Koordinatensystem.

Losekompensation

Die Positionierfehler durch mechanisches Spiel der Linear- und Rundachsen werden automatisch korrigiert.

Temperaturkompensation

Die Achsen können anhand von dynamischen Operatoren (Best.-Nr. C...000 250) oder durch Achsabgleich (Best.-Nr. C...000 260) korrigiert werden.

Auflösung des Messsystems

Die Auflösung ist kleinste definierte Wert, der vom Messsystem verarbeitet werden kann.

Die interne Auflösung des Systems ist für alle Linearachsen gemeinsam und ist urspünglich auf 1 Mikrometer eingestellt.

Die interne Auflösung des Systems für Rundachsen beträgt 0,0001 Grad.

Diese Werte können parametriert werden, um die geforderte Präzision und den gegebenen Vorschub zu berücksichtigen.

Parametrierbare Präzision

Best.-Nr. C...000 519

Die interne Auflösung des Systems ist für alle Achsen gemeinsam und ist ursprünglich auf 1 Mikrometer eingestellt.

Die interne Auflösung des Systems für Rundachsen beträgt 0,0001 Grad.

Diese Werte können bei der Integration parametriert werden, um die geforderte Präzision und den gegebenen Vorschub zu berücksichtigen.

Vermassung Zoll/mm (G70/G71)

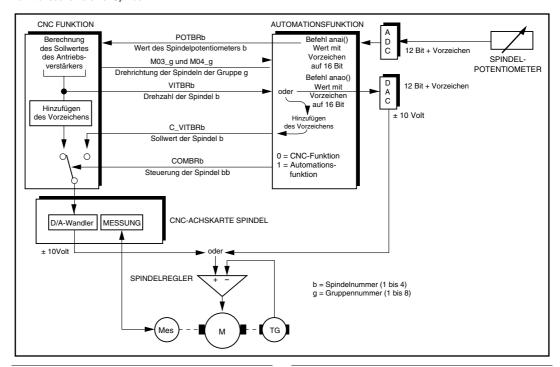
Die Wahl der Messeinheit erfolgt bei der Integration des Systems über Maschinenparameter.

Funktion Ball-bar

Die Funktion Ball-bar ist ein vordefinierter Makrobefehl, der in der CNC integriert ist und zur Verhaltenskontrolle der Achsen und zur Einstellung der Parameter für die Antriebsverstärker dient.

Ausgehend von Kreisen mit G02/G03 oder von Kreisen, die in kleine Segmente (Tabcyls) auf die Hauptachsen oder andere Achspaare aufgeteilt wurden, erhält man ein Diagramm der radialen Abweichung, was die Einstellung folgender Parameter wesentlich erleichtert:

- Koeffizient des Vorlaufs bei der Beschleunigung
- Filterungskonstante des CNC-Sollwertes
- Ausgleich der Spitze bei Richtungsumkehr (antipitch).


Verfahrweg Ball-bar

Funktionsbeschreibungen

Spindelfunktionen

Funktionsschema einer Spindel

Drehzahlsteuerung

Die im Teileprogramm programmierte Spindel-drehzahl, S..., wird in der CNC entsprechend der Stellung des Potentiometers (50 bis 100%) und der Getriebestufe berechnet. Diese Verarbeitung ermöglicht die Erstellung des Drehzahlsollwertes der Spindel in 3 Formen:

- am D/A-Wandler der Achskarte, direkt in Position
- am D/A-Wandler der Achskarte nach Änderung (Sollwert und COMBRb) durch das SPS-Programm
- am D/A-Wandler der SPS-Karte (wenn keine Achskarte für die Spindel vorhanden ist).

Steuerung und Messsystem

Best.-Nr. C...000 326; C...000 327; C...000 328; C...000 366; C...000 367; C...000 368; C...000 369; C...000 452

Ein Spindelmesssystem ist für folgende Funktionen erforderlich:

- Spindelindexierung M19
- · Zyklen für Gewindeschneiden und -bohren
- Synchronisierung der Spindeln
- Funktion Spindel als C-Achse.

Automatische Bestimmung der Getriebestufe

Das System bestimmt eine der sechs Getriebestufen entsprechend der programmierten Spindeldrehzahl S. Die CNC übergibt die Funktion M40 bis M45 (je nach der bei der Inbetriebnahme parametrierten Getriebestufe) an die SPS (über den Datenaustauschbereich).

Konstante Schnittgeschwindigkeit

Diese Basisfunktion der Technologie Drehen verändert die Drehzahl der Spindel, entsprechend der Position der Werkzeugmitte, bezogen auf den Durchmesser des Werkstücks.

Gewindeschneiden

Gewindeschneidzyklus mit konstanter Steigung (G33, G38)

Diese Funktion gehört zur Grundausführung bei Drehmaschinen und dient zum zylindrischen, konischen oder plan Gewindeschneiden durch Steuerung der Spindeldrehzahl (Werkstück) und der Längsachse (Werkzeugträger).

Die Gewinde können einen oder mehrere Gewindegänge besitzen und durch gerades oder schräges Eintauchen ausgeführt werden. Die verschiedenen Zustellungen werden in degressiven Tiefen ausgeführt.

Gewindestrehlen (G31)

Best.-Nr. C...000331

Dieser Zyklus ist für Fräsmaschinen bestimmt und steuert den Vorschub des Werkzeugs (Spindelachse) im Verhältnis zur Spindeldrehung. Das Werkstück ist stationär und das Werkzeug befindet sich in der Spindel.

Indexierung (M19)

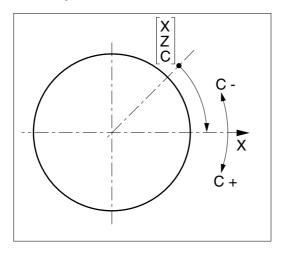
Diese Funktion ermöglicht einen präzisen Halt der Spindel in einer fest auf ein 1/1000 Grad bezogen auf einen Festpunkt (Nullpunkt des Spindelgebers) programmierten Position.

Die für den Geber erforderliche Auflösung beträgt mindestens 1024 Inkremente pro Umdrehung.

Funktionsbeschreibungen

Spindelfunktionen

C-Achse und Umwandlung der Koordinatensysteme


Best.-Nr. C...000 340

In dieser Konfiguration zum Drehen wird die Spindel als interpolierte Achse mit einer der CNC-Achsen (X oder Z) verwendet. Die Auflösung für das Messsystem der Spindel beträgt mindestens 90000 Inkremente pro Umdrehung. Der Geber des Spindelmotors für den Drehzahlregelkreis muss ein hochauflösender Geber sein.

G20: Programmierung in Polarkoordinaten X, Z, C

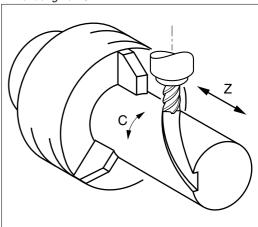
Diese Funktion ermöglicht die Programmierung der linearen Achsen X Z und die Steuerung einer Rundachse C Modulo 360°.


Anwendung von G20 und Polarkoordinaten

G21: Programmierung in kartesischen Koordinaten X, Y, Z

Das System sorgt für die Umwandlung kartesisch/polar (Umwandlung von X-Y in X-C). Die Interpolation der Achsen X und C ermöglicht das Fräsen in einer rechtwinklig zur Spindelachse verlaufenden Ebene. Das Werkzeug wird hierbei von einer Hilfsspindel angetrieben.

Anwendung von G21



G22: Programmierung in zylindrischen Koordinaten X, Y, Z

Das System sorgt für die Umwandlung kartesisch/polar (Umwandlung von X-Y in Z-C).

Die Interpolation der C-Achse ermöglicht das Fräsen auf der Evolute des Zylinders mit dem Radius X. Das Werkzeug wird über eine Hilfsspindel angetrieben.

Anwendung von G22

Spindelsynchronisation

Best.-Nr. C...000 156

Diese Funktion verwaltet die Synchronisierung der Drehzahl von 2 Spindeln mit Messsystem.

Sie dient hauptsächlich für Bearbeitungen wie das Abstechen.

Gewindebohren ohne Ausgleichsfutter (G84)

Best.-Nr. C...000 332

Der Vorschub der Spindelachse wird abhängig von der Spindeldrehung gesteuert. Die Drehrichtungsumkehr am Ende des Gewindebohrens erfolgt progressiv und ruckfrei.

Der Unterschied zum Gewindebohren mit einem Werkzeug mit Radialspiel liegt in der Tatsache, dass der Schleppfehler gleich Null ist.

Diese Funktion basiert auf der Aufhebung des Schleppfehlers, wodurch sich die Verwendung eines Werkzeughalters mit Ausgleich des Axialspiels erübrigt.

Funktionsbeschreibungen

SPS-Funktionen

Datenaustauschbereich CNC/SPS

Der Datentransfer zwischen der CNC und der SPS erfolgt über einen für den Datenaustausch reservierten Bereich.

Datentransfer von der CNC an die SPS

- Tastaturcode, aktuelle Betriebsarten, JOG-Inkremente, Nummern der Bildschirmseiten, CNC-Fehlernummern, Bedienfeld aktiv oder CNC aktiv, externe Parameter.
- · Zustand von CNC und Maschine.
- · Nummer des aktuellen Programms.
- · Achsen (initialisiert, in Bewegung, blockiert).
- · Spindeln (Zustand, Drehzahl S).

Die Verarbeitung folgender Daten erfolgt nach Achsgruppen (von 1 bis maximal 8, je nach System):

- Zustände der Gruppe, G-Funktionen, aktuelle Betriebsarten;
- Codierte M-Funktionen ohne Rückmeldung;
- Codierte M-Funktionen mit Rückmeldung;
- 34 decodierte M-Funktionen;
- Werkzeugnummer T.

Datentransfer von der SPS an die CNC

- Tipp- und gehaltene Befehle für die Simulation des Bedienfeldes.
- Kontrolle der Achsmanipulatoren, Betriebsartensteuerung, Fehlermeldungen.
- Wahl der Achsgruppen, Programmnummern.
- Verarbeitung der Spindeln, Potentiometer, Befehle, Sollwerte.
- Verriegelung für bestimmte Betriebsarten, JOG, Vorschub.
- Validierung der Achspaare für Digitalachsen
- Externe Parameter.

Die Verarbeitung folgender Daten erfolgt nach Achsgruppen (von 1 bis maximal 8, je nach System):

- Maschinenfunktionen;
- Vorschubpotentiometer für alle Achsgruppen.

SPS-Speicher

Best.-Nr. C...000 347

Dieser Teil des globalen RAM-Speichers nimmt das in Ladder und/oder C geschriebene SPS-Programm auf.

Der Speicher wird in Modulen mit je 64 kB geliefert.

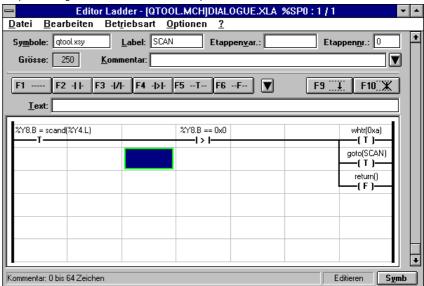
C-Programmierung

Best.-Nr. C...000 571

Diese Software-Funktion ermöglicht das Laden und Ausführen eines mit dem C-Compiler auf einem externen PC entwickelten Programms.

Programmierung in Ladder

Die Programmiersprache Ladder, auch "Kontaktplan" genannt, ist eine Grafiksprache, die sehr einem Relaisplan ähnelt, aber leistungsstarke Funktionen zur Bewältigung von komplexen Automatisierungsproblemen besitzt.


Die Grafikdarstellung in Ladder gewährleistet eine gute Lesbarkeit des Programms, sowie eine leichte Optimierung und Fehlersuche durch Funktionen zur dynamischen Darstellung.

Diese Sprache berücksichtigt alle Automatisierungsfunktionen der Maschine:

- Beschreibung einer Bedieneroberfläche auf dem Maschinenbedienfeld;
- Verwaltung eines Kommunikationsprotokolls über serielle Schnittstelle;
- Verwaltung der Hilfsachsen der Maschine (auch SPS-Achsen genannt);
- Verwaltung der logischen und analogen Ein-/ Ausgänge.

Die Programmierung der SPS der CNC Num in Ladder und die Optimierung der Programme erfolgt auf einem PC mit der Software PLCTool.

Beispiel für Programmierseite mit der Ladder-Sprache

Funktionsbeschreibungen

SPS-Funktionen

Analoge Ein-/Ausgänge

Bei den Zentraleinheiten der CNC stehen analoge Ein-/Ausgänge zur Verfügung (Siehe Gesamtübersicht). Erweiterungsmodule sind optional erhältlich.

Analoge Eingänge (A/D-Wandler)

Diese A/D-Wandler wandeln eine SPS-Eingangsspannung (0 bis 10 Volt) in einen digitalen Wert (12 Bit) um, der vom SPS-Programm verwendet werden kann.

Analoge Ausgänge (D/A-Wandler)

Diese D/A-Wandler wandeln einen vom SPS-Programm geladenen digitalen Wert (12 Bit) in eine analoge Ausgangsspannung (0 bis 10 Volt) zur Steuerung oder Verwendung von externen Ereignissen um.

Logische Ein-/Ausgänge

Diese Module sind optional (siehe Kapitel 2).

Eingänge

Dies sind Binäreingänge mit 2 logischen Zuständen. An diesen Eingängen sind die Zustandsgeber der Maschine angeschlossen. Diese Eingänge werden zyklisch von der SPS gelesen und müssen im SPS-Programm verarbeitet werden. Die Mindestabfragezeit dieser Eingänge beträgt 20 ms.

Beispiel: Näherungsschalter, Drucktaster usw.

Ausgänge

Dies sind Binärausgänge mit 2 logischen Zuständen zur Steuerung von Auslösern der Maschine. Diese Ausgänge werden von der SPS, entsprechend den programmierten Anweisungen gesetzt.

Die Mindestzeit für die Berücksichtigung dieser Ausgänge beträgt 20 ms.

Beispiel: Steuerung eines Schützes, einer Kontrolllampe usw.

Schnelle, logische Eingänge

Dies sind Binäreingänge mit 2 logischen Zuständen, die bei Auftreten einer ansteigenden oder abfallenden Signalflanke Hardware-Tasks oder ereignisgersteuerte Tasks aktivieren.

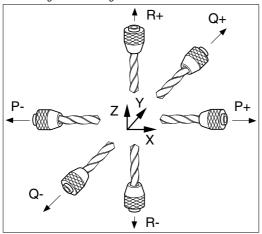
Die Zeit für die Berücksichtigung beträgt maximal 1ms.

Diese Tasks schaffen Interrupts im Ablauf der SPS-Programme, was die Ausführung prioritärer Bearbeitungen ermöglicht.

Beispiel: Verarbeitung von TTL-Messtastersignalen.

Funktionsbeschreibungen

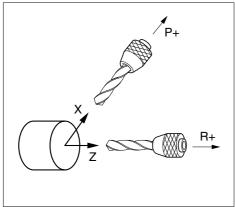
Werkzeugverwaltung


Wahl der Werkzeugachse (G16)

Ausrichtung der Werkzeugachse beim Fräsen

Die Funktion G16, mit einem der zwingend anzugebenden Parameter P, Q oder R, mit einem positiven oder negativen Vorzeichen, definiert die Ausrichtung der Werkzeugachse.

Die Werkzeugachse kann bei Maschinen mit auswechselbarem Kopf oder mit Winkelkopf in 6 verschiedene Positionen gestellt werden.


Ausrichtung der Werkzeugachse beim Fräsen.

Ausrichtung der Werkzeugachse beim Drehen

Die Funktion G16, mit einem der zwingend anzugebenden Parameter P oder R, mit einem positiven oder negativen Vorzeichen, definiert die Ausrichtung der Werkzeugachse.

Ausrichtung der Werkzeugachse beim Drehen.

Korrekturschalter

Der Aufruf der Adresse "D", in Verbindung mit einer Nummer, wählt den Korrekturschalter.

Die in den Tabellen gespeicherten Werkzeugabmessungen werden in den programmierten Achsen validiert.

Werkzeugkorrektur durch die SPS

Best.-Nr. C...000 410 (pro SPS)

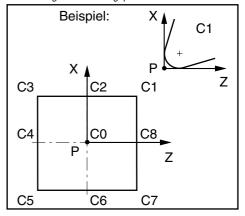
Der Bediener kann jederzeit (auch während der Bearbeitung) Werkzeugkorrekturen eingeben, sobald er an einem Werkstück eine Abweichung zwischen den erwarteten Maßen und den erzielten Maßen feststellt.

Die Werkzeugkorrekturen können in Verbindung mit externen Messsystemen von der SPS verwaltet werden, um eine vom System verwaltete, automatische Verschleisskorrektur durchzuführen.

Diese Korrekturen (positiv oder negativ) dienen zum Ausgleich von Toleranzen in den Abmessungen des Werkzeugs oder des Werkstücks (Verschleiss, Ausdehnung).

Werkzeugkorrektur beim Drehen

Werkzeuglängenkorrektur

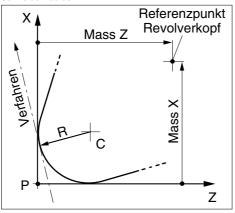

Die Werkzeuglängenkorrektur ist, mit der unter G16 definierten Ausrichtung, der Werkzeugachse zugeordnet.

Die programmierten Verfahrwege des Werkzeugs werden um die im gewählten Korrekturschalter "D" deklarierte Werkzeuglänge in X und die Werkzeugbreite in Z korrigiert.

Werkzeugradiuskorrektur

Die programmierten Verfahrwege des Werkzeugs werden um den Schneidenradius, entsprechend der durch die im gewählten Korrekturschalter "D" deklarierten Codes C0 bis C8 definierten Ausrichtung, der Werkzeugspitze korrigiert.

Ausrichtung der Werkzeugspitze.



Funktionsbeschreibungen

Werkzeugverwaltung

Der Code C0 bis C8 dient zur Lokalisierung der Mitte (C) der Werkzeugschneide in Bezug auf den theoretischen Schnittpunkt (P).

Schneidenradius.

Die Korrektur G41 führt zu einer Verschiebung des Profils nach links in Verfahrrichtung gesehen.

Die Korrektur G42 führt zu einer Verschiebung des Profils nach rechts in Verfahrrichtung gesehen.

Werkzeugkorrektur beim Fräsen

Werkzeuglängenkorrektur

Die Werkzeuglängenkorrektur wird durch die in G16 definierten Ausrichtung der Werkzeugachse zugeordnet.

Die programmierten Verfahrwege werden um die im gewählten Korrekturschalter "D" deklarierte Werkzeuglänge L korrigiert.

Werkzeugradiuskorrektur

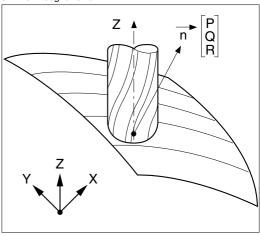
Die programmierten Verfahrwege werden um den im gewählten Korrekturschalter "D" deklarierten Werkzeugradius korrigiert.

Die Korrektur G41 führt zu einer Verschiebung des Profils nach links in Verfahrrichtung gesehen.

Die Korrektur G42 führt zu einer Verschiebung des Profils nach rechts in Verfahrrichtung gesehen.

3D-Werkzeugkorrektur

Die 3D-Werkzeugkorrektur für 3 oder 5 Achsen ermöglicht die Bearbeitung von dreidimensionalen, linearen Verfahrwegen unter Berücksichtigung der Abmessungen eines kugelförmigen (G29) oder zylindrischen (G43) Werkzeugs.

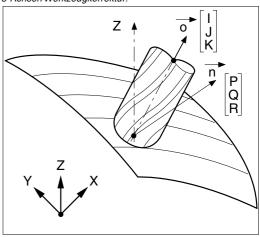

3D-Werkzeugkorrektur (G29)

Best.-Nr. C...000 400

Bei Werkzeugkorrektur für 3 Achsen verläuft die Werkzeugachse parallel zu einer der Achsen des durch die Funktion zur Ausrichtung der Werkzeugachse (G 16) definierten Koordinatensystems.

Jedem programmierten Punkt wird der durch P, Q und R definierte Normalvektor an der zu bearbeitenden Oberfläche zugeordnet.

3D-Werkzeugkorrektur.



5-Achsen Werkzeugkorrektur

Best.-Nr. C...000 411

Bei Werkzeugkorrektur für 5 Achsen kann die Werkzeugachse geneigt sein, wenn die Maschine mit einem Doppelschwenkkopf ausgerüstet ist. Jedem programmierten Punkt werden der durch P, Q und R definierte Normalvektor und der durch I, J und K plus eventuell die Winkel der Kopfstellung definierte Vektor der Werkzeugausrichtung zugeordnet.

5-Achsen Werkzeugkorrektur.

Funktionsbeschreibungen

Bearbeitungszyklen

Fräszyklen

Dies sind alle Standard-Bearbeitungszyklen für die Technologie Fräsen (G81 bis G89), die man vom Hauptprogramm aus aufrufen kann.

Diese Zyklen unterstützen folgende Funktionen:

- Bohren (Zentrieren, Senken, Tieflochbohren, Spanbrechen), Gewindebohren
- · Ausbohren mit unterschiedlichen Varianten
- andere Zyklen: Gewindeschneiden mit Ausdrehstahl usw.

Diese Zyklen befinden sich in Unterprogrammen im ISO-Format (Makrobefehle). Sie können geändert werden und stellen eine für den Maschinentyp und die Technologie personalisierbare Sammlung von Unterprogrammen dar.

Ausserdem kann man, ausgehend von einem Hauptprogramm über G-Funktion, spezifische Zyklen erstellen (siehe Abschnitt "Personalisierte Zyklen").

Zyklen für Rechteck- und Langlochtaschen (G45)

Zyklen für Fräsmaschine.

Diese Zyklen erleichtern die Ausführung von kreisförmigen Taschen, Langloch-, Viereck- oder Rechtecktaschen. Die Haupt- und Nebenachsen können im Absolutmass programmiert werden und definieren den Mittelpunkt der Tasche in der Arbeitsebene, oder die Tiefe der Tasche in der Werkzeugachse.

Die Funktion G45 ermöglicht die Programmierung verschiedener, spezifischer Sätze, wobei NUx die Geometrie der Kontur und die Schnittaufteilung sowie die drei Bearbeitungsbefehle: Bohren, Schruppen, Schlichten definiert.

Taschen- und Planzyklen für beliebige Konturen (G46)

Best.-Nr. C...000 159

Zyklen für Fräsmaschinen.

Diese Zyklen bearbeiten eine oder mehrere Taschen oder Oberflächenbearbeitungen in verschiedenen Formen mit oder ohne Inseln oder Vertiefungen.

Die Funktion G46 ermöglicht die Programmierung verschiedener, spezifischer Sätze, wobei NUx die Geometrie der Kontur und die Schnittaufteilung, sowie die drei Bearbeitungsbefehle: Bohren, Schruppen, Schlichten definiert.

Diese Zyklen können nicht geändert werden.

Messzyklen für Fräsmaschinen

Best.-Nr. C...000 591

Sie dienen zur Erstellung von Einstell- und Messprogrammen über manuelle oder automatische Programmierung und gewährleisten folgende Funktionen:

- Eichung der Messtaster
- Voreinstellung der Werkzeuge (L, R)
- Bestimmung und Wiederherstellung der NPV1 der Achsen X, Y, Z (Ausrichten des Werkstücks) und NPV1 der Rundachsen A, B, C (Ausrichten eines Werkstücks auf einem Rundtisch)
- Bestimmung und Wiederherstellung der NPV3 (Aussermittigkeit der Aufspannung auf dem Rundtisch).

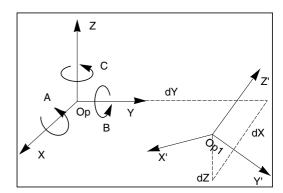
Diese Zyklen können geändert werden.

Schiefe Ebene im Raum (G24)

Best.-Nr. C...000 914

Die Bearbeitung in der schiefen Ebene verwaltet die verschiedenen Kopftypen der Maschinen und vereinfacht die Programmierung der Bearbeitung.

Die Zuordnung der Drehung und des Verschiebens definiert ein Koordinatensystem mit beliebiger Ausrichtung.


Alle Funktionen wie Werkzeugkorrektur L und R, Bearbeitungszyklen, sowie die Kontrolle von Drehzahl, Beschleunigung und der Verfahrwege, bleiben erhalten.

Die Transformation des Koordinatensystems wird wie folgt definiert:

- Verschiebungen UVW / XYZ
- Drehungen ABC um die jeweiligen Achsen XYZ.

Es werden die wichtigsten Kopftypen mit ihren jeweiligen Verschiebungen berücksichtigt:

- kartesischer Kopf B A: B-Achse von der A-Achse geführt
- kartesischer Kopf A B: A-Achse von der B-Achse geführt
- kartesischer Kopf A C: A-Achse von der C-Achse geführt
- kartesischer Kopf B C: B-Achse von der C-Achse geführt
- Kopf mit A-Achse, von der B-Achse geführt, um n Grad um X geneigt
- Kopf mit A-Achse, von der C-Achse geführt, um n Grad um X geneigt
- Kopf mit B-Achse, von der C-Achse geführt, um n Grad um Y geneigt
- Kopf mit B-Achse, von der A-Achse geführt, um n Grad um X geneigt.

Die Drehung ABC definieren Die Verschiebung dX dY dZ definieren NPV1 des neuen Koordinatensystems

Funktionsbeschreibungen

Bearbeitungszyklen

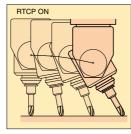
RTCP (G26)

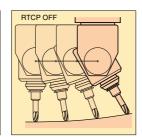
Best.-Nr. C...000 154

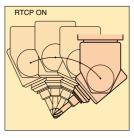
Ausgleichsbewegung um die Werkzeugmitte.

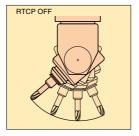
Kann für alle Maschinentypen mit 5 bekannten Achsen verwendet werden

Kompensiert automatisch die durch das Drehen der Rundachsen einer Maschine mit 5 Achsen entstandenen Verschiebungen durch eine Ausgleichsbewegung in den Hauptachsen der Maschine. Dieser Ausgleich hält die Position der Werkzeugmitte eines halbkugelförmigen Werkzeugs auf dem Verfahrweg.


Der Einsatz der Funktion RTCP wird durch eine mitgelieferte Software zur Installation auf PC unter Windows unterstützt.


Diese Software erstellt ein Makroprogramm, das die Beschreibung der Kinematik der Rundachsen enthält.


Da diese Funktion nicht die Ausrichtung des Werkzeugs ausführt, kann es erforderlich sein, diese Option durch die Funktion N/M Auto zu ergänzen.


Diese Option enthält eine Funktion "schiefe Ebene" identisch mit der Option C0 ... 914.

RTCP ON und RTCP OFF.

Funktion N/M Auto

Best.-Nr. C...000 082

Diese durch die SPS validierte Funktion ermöglicht das manuelle Verfahren von bis zu maximal 5 Achsen unter der Kontrolle des Bedieners, während die anderen Achsen vom Teileprogramm in Automatikbetrieb gesteuert werden.

Die in Handbetrieb steuerbaren Achsen werden über externe Parameter im Teileprogramm validiert oder gesperrt. Wenn das Bearbeitungsprogramm ein Verfahren auf diesen Achsen befiehlt, wird dies ignoriert.

Konturpräzision (UGV1)

Best.-Nr. C...000 155

Der Zweck dieser Funktion ist die Eliminierung des Schleppfehlers bei hohen Bearbeitungsgeschwindigkeiten. Dies wird durch Anwendung folgender Massnahmen erreicht:

- Vollständige Geschwindigkeitsvorsteuerung
- Vorsteuerung der Beschleunigung
- Automatische Offset-Korrektur der analogen Antriebsverstärker
- Korrektur der Reibung anti-pitch: bei der Bearbeitung von Kreisen erscheint das Reibungsmoment als ein dynamisches Spiel bei der Richtungsumkehr und die einstellbare Korrektur kompensiert dieses Reibungsmoment
- Beschleunigungen mit Begrenzung der Ableitung des Ruckes (Jerk).
- Präzise Geschwindigkeitskontrolle entsprechend des Verfahrweges.

Diese Überwachung erfordert die Bemessung des Krümmungsradius auf einem ausreichend langen Teilsegment des kommenden Verfahrweges (Horizont). Sie erfordert ausserdem die Erfassung und die Bemessung der Winkelpunkte, die auf diesem Teilsegment des Verfahrweges existieren können. Bei Formbearbeitung bestehen die Verfahrwege aus kleinen Sätzen. In diesem Fall kann sich die Kontrolle auf eine variable Anzahl von Sätzen erstrecken (maximal 60 Sätze bei komplexen Verfahrwegen).

Dreh-/Fräszentrum

Best.-Nr. C...000 581

Umein Dreh-/Fräszentrum (Fräsen + Drehen) zu steuern, werden zur Basis-Software zum Fräsen folgende Funktionen zum Drehen hinzugefügt:

- Ansteuerung Achse/Spindel
- · Verarbeitung einer radialen Achse (Ausbohren)
- Umwandlung kartesisch/polar
- Drehzyklen
- Grafik im Doppelfenster.

Funktionsbeschreibungen

Bearbeitungszyklen

Drehzyklen

Dies sind alle Standard-Bearbeitungszyklen für die Technologie Drehen (G33, G38, G63 bis G68, G81 bis G85, G87 und G89), die man vom Hauptprogramm aus aufrufen kann. Diese Zyklen ermöglichen folgende Funktionen:

- Achsparalleles Gewindeschneiden, mit konstanter Steigung auf Kegel, verkettet
- Nutenzyklus, achsparalleles Schruppen, Nutenstechen
- Bohren (Zentrieren, Senken, Tieflochbohren, Spanbrechen), Gewindebohren
- · Ausbohren mit oder ohne Verweilzeit.

Diese Zyklen können geändert werden. Man kann spezifische, mit G angewählte Zyklen erstellen (siehe Abschnitt "Personalisierte Zyklen").

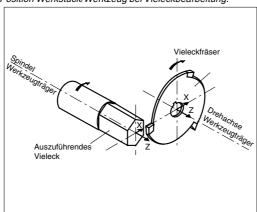
Messzyklen für Drehmaschinen

Best.-Nr. C...000 590

Sie dienen zur Erstellung von Einstell- und Messprogrammen über manuelle oder automatische Programmierung und gewährleisten folgende Funktionen:

- · Eichung der Messtaster
- · Voreinstellung der Werkzeuge
- Vermessen des Werkstücks und Anpassung der Korrekturschalter
- Bestimmung und Wiederherstellung der NPV1 der Linearachsen X und Z.

Diese Zyklen können geändert werden.


Polygonbearbeitung

Best.-Nr. C...000 538

Diese Funktion des Drehens ermöglicht die Ausführung von Abflachungen oder Vieleckformen auf der Umlaufbahn von Drehteilen.

Die Schneidtechnik basiert auf der Synchronisierung einer Rundachse und einer Spindel, die beide in gleicher Richtung in einem programmierten Drehzahlverhältnis drehen.

Position Werkstück/Werkzeug bei Vieleckbearbeitung.

Erstellung von personalisierten Zyklen

Man kann zusätzliche Zyklen speziell für eine Applikation oder eine Maschine schreiben. Diese Zyklen kann man dann durch nicht verwendete G- oder M-Funktionen in der Programmierung der Systeme aufrufen.

Für die G-Funktionen kann man die Programme %10100 bis %10255 erstellen und sie mit den entsprechenden Funktionen G100 bis G255 aufrufen.

Für die einfachen M-Funktionen ermöglicht ein Maschinenparameter "Aufruf von Unterprogrammen durch M-Funktion" den Aufruf einer bei der Installation definierten Programmnummer, wenn diese M-Funktion im Teileprogramm erfasst wird.

Funktionsbeschreibungen

Programmunterbrechung und Umleitung

Messwerterfassung (G10)

Best.-Nr. C...000 520

Bei Auftreten eines logischen Signals, an einem schnellen Eingang der SPS, werden die Maße des programmierten Punktes durch die der Istposition ersetzt und diese in externen Parametern gespeichert.

Zurückfahren auf der Kontur

Best.-Nr. C...000 523

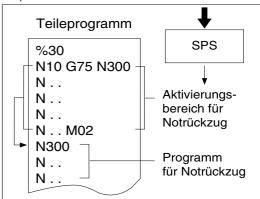
Diese Funktion gilt nur für die Gruppe 1 und ermöglicht das Zurückfahren und die Rückstellung des beweglichen Maschinenteils an den Ausgangspunkt.

Bei einem NC-Halt bestätigt der Bediener den gehaltenen Befehl des Zurückfahrens auf der Kontur. Dann läuft der bewegliche Maschinenteil rückwärts mit dem programmierten Vorschub in den gespeicherten Sätzen (maximal 100 Sätze) und zwar in Automatik oder im Einzelsatz oder im Eilgang.

Wenn der Bediener den Befehl zum Zurückfahren bestätigt, um das Programm vor dem Punkt der Unterbrechung wieder aufzunehmen, wird die anfängliche Betriebsart, zum Zeitpunkt der Wiederaufnahme, in dem durch NC-Halt unterbrochenen Satz wiederhergestellt.

Das Zurückfahren und die Rückstellung können unter Berücksichtigung einer dynamischen Werkzeugkorrektur unter 0,1 mm mit einer Verschiebung erfolgen.

Die Wiederaufnahme kann vor dem Rücklaufpunkt erfolgen.


Die Funktion der automatischen Achsrückstellung kann in Betriebsart "Service" verwendet werden. In diesem Fall werden die Punkte des manuellen Freifahrweges gespeichert (maximal 10 Punkte) und in der gleichen Reihenfolge, bei der Achsrückstellung im Eilgang, bis zu einer parametrierbaren Entfernung vom Punkt der Wiederaufnahme wiedergegeben.

Notrückzug (G75)

Best.-Nr. C...000 505

Bei Auftreten eines Signals an der SPS wird der laufende Satz unterbrochen und das Programm springt zu einer im Programm definierten Satzfolge.

Beispiel:

Funktionsbeschreibungen

Bedieneroberfläche und Bedienfelder

Die Bedieneroberfläche ist die Gesamtheit der Funktionen, die den Dialog zwischen den Bedienern und der Maschine gewährleisten. Diese Einheit besteht aus Bedienfeld und Bildschirm sowie CNC-Software oder Hilfsprogrammen. Sie kann an alle Maschinen und Applikationen angepasst werden.

Im Basis-Angebot ermöglichen bestimmte Bildschirmseiten die Überwachung der Maschine: Verfahren der Achsen (Istposition, Schleppfehler), aktueller Satz mit den im Satz berücksichtigten modalen und nicht modalen Funktionen, Werte des Vorschub- und des Spindelpotentiometers in Prozent, Werte der Korrekturschalter und der Parameter usw.

Die Software verwaltet die Ergonomie und die Verkettung dieser Bildschirmseiten und schaltet automatisch den Bildschirmschoner ein

Eine breite Palette von Bedienfeldern

NUM bietet eine grosse Auswahl an Bedienfeldern, um Ihren Anforderungen bestens gerecht zu werden:

- Bedienfelder mit Bildschirm oder TFT-Anzeige
- Maschinenbedienfelder
- Kompaktbedienfeld und tragbares Bedienfeld, das die Funktionen für Bediener und Maschine kombiniert.
- PC-Bedienfeld mit TFT-Anzeige
- Sonderbedienfelder Num Mplus und Tplus.

Weitere Angaben finden Sie im Kapitel Technische Daten.

CNC-Bedienfelder

Die Baureihe umfasst vier Modelle:

- Bedienfeld CP30 mit QWERTY-Tastatur und 14"-Farbbildschirm: Best.-Nr. C...000 053 oder Best.-Nr. C...000 353
- Bedienfeld MP20 mit Tastatur mit 50 Tasten und 9"-Monochrom-Bildschirm: Best.-Nr. C...000 055 oder Best.-Nr. C...000 359
- Bedienfeld CP20 mit Tastatur mit 50 Tasten und 10"-Farbbildschirm: Best.-Nr. C...000 253 oder Best.-Nr. C...000 358
- Bedienfeld FS20 mit LCD-Farbbildschirm 10,4" (Best.-Nr. C...000 484) und separater Tastatur KBD30 (Best.-Nr. C...000 485).

Gewährleistete Funktionen

- Teileprogrammierung (ISO oder interaktive Programmierung PROCAM)
- Einrichten
- Wahl der verschiedenen Betriebsarten
- · Wahl der Bildschirmseiten und Cursorsteuerung
- Grafikanzeige der Endkontur und der Bearbeitungsdurchläufe
- Überwachung während des Betriebs.

Sie können in Verbindung mit einem Maschinenbedienfeld zur Steuerung der Maschine während der Produktion verwendet werden.

Konfigurationen mit mehreren CNC und mehreren Bedienfeldern

Diese Funktion ist den Bedienfeldern mit Bildschirm MP20, CP20 und CP30 vorbehalten.

Mit einem Multiplex-Modul kann man

- bis zu 4 Bedienfelder an einer Maschine installieren.
- 2 Maschinen über ein Bedienfeld steuern.

Separates Multiplex-Modul: Best.-Nr. C...000 354.

Kompaktbedienfeld

Kompaktbedienfeld MP20 mit 9"-Monochrom-Bildschirm: Best.-Nr. C...000 264.

Kompaktbedienfeld CP20 mit 10"-Farbbildschirm: Best.-Nr. C...000 269.

Das Kompaktbedienfeld besitzt 6 frei programmierbare Tasten, ein Potentiometer, einen Not-Aus Taster und einen Drucktaster und ermöglicht die Steuerung der Maschine und die Bearbeitung der Teileprogramme mit der interaktiven Programmierung PROCAM.

Eine PC-Tastatur (Best.-Nr. C...000 248) erleichtert die Bearbeitung und Änderung der ISO-Programme.

Tragbares Bedienfeld (POP)

Tragbares Bedienfeld mit 6"-LCD-Bildschirm TFT: Best.-Nr. C...000 246

Dieses Bedienfeld bietet Mobilität während der Bedien-Operationen. Es gewährleistet alle Funktionen der Programmierung (Teach-In, PROCAM oder ISO), des Einrichtens, der Produktion und der Wartung:

- · Anzeige der Operationen auf dem Bildschirm;
- · Zugang zu den Menüs der CNC;
- · Handhabung der Achsen;
- · Optimierung (Referenzpunktanfahren);
- Ausführung von Programmen oder Sätzen in MDI (ZYKLUS, NC-HALT);
- Ausführung spezifischer Funktionen über die personalisierbaren Funktionstasten;
- Einschalten der Maschine;
- Änderung des Vorschubs über Potentiometer;
- Not-Aus:
- Totmannschaltung über Schalter mit 3 Stellungen.
- Der Anschluss einer PC-Tastatur (Best.-Nr. C...000 248) erleichtert die Integrations- und Wartungsarbeiten.

Maschinenbedienfelder MP01 und MP02

- Maschinenbedienfeld MP01 kompatibel mit den Bedienfeldern MP20, CP20 und CP30: Best.-Nr. C...000 356.
- Maschinenbedienfeld MP02 kompatibel mit dem Bedienfeld FS20 und dem PC-Bedienfeld FTP41: Best.-Nr. C...000 486.

Das Maschinenbedienfeld gewährleistet dem Hersteller dank der frei programmierbaren Tasten eine optimale Flexibilität der Anpassung an die Besonderheiten der Maschine. Ausserdem besitzt sie einen Schalter mit 3 Stellungen, zwei Potentiometer und einen Not-Aus Taster. Sie ist über LWL mit der CNC verbunden.

Verfügbare Funktionen

- Tippsteuerungen (Zyklus, NC-HALT, Achsrückstellung, usw.)
- Steuerung der manuellen Bewegungen (JOG kontinuierlich und inkremental)
- Verfügbare Befehle, die im Applikationsprogramm der SPS personalisiert werden können
- Änderung des Vorschubs und der Spindeldrehzahl
- Anzeige der Maschinenzustände.

Funktionsbeschreibungen

Bedieneroberfläche und Bedienfelder

PC-Bedienfeld FTP41

• Industrie-PC FTP41

- mit Windows 98: Best.-Nr. C...000 480
- mit Windows 2000: Best.-Nr. C...000 490
- Industrie-PC-Tastatur KBD-PC: Best.-Nr. C...000 482

Das PC-Bedienfeld ist in Verbindung mit den CNC Num Power die ideale Plattform für die Entwicklung aller Bedieneroberflächen für jede Technologie.

Es handelt sich um einen kompletten PC mit:

- Pentium-Prozessor oder gleichwertig
- Festplatte grösser als 1,66 GB
- LCD-Farbbildschirm 10,4" TFT
- Diskettenlaufwerk auf der Vorderseite
- 6 Steckplätze für Erweiterungskarten ISA und PCI
- Betriebssystem Windows 98 oder 2000 installiert
 Es wird mit dem Software-Paket für PC-Bedienfeld geliefert.

Die Verbindung mit der CNC erfolgt durch eine serielle Schnittstelle 115 kBaud (Num 1050).

Dieses Bedienfeld kann in Verbindung mit dem Maschinenbedienfeld MP02 gleicher Breite verwendet werden.

Software-Paket für PC-Bedienfeld

Best.-Nr. C...082 500

Dieses Software-Paket Version Windows 95/98/2000/ Me beinhaltet die erforderlichen Hilfsmittel zur Erstellung der Schnittstelle zwischen einem PC und der CNC: PLCTool, Maschine Manager, SETTool, MMITool, PERSOTool, PCToolKit, Edit Part Program, NumBackUp, PC Panel MMI, PC Standard MMI, sowie die Treiber für Uni-Telway.

QWERTY PC-Tastatur

Best.-Nr. C...000 248

Diese Tastatur ist eine natürliche Ergänzung des Kompaktbedienfeldes und des tragbaren Bedienfeldes und erleichtert die Bearbeitung und die Änderung der ISO-Programme.

Bedienfelder Num M*plus* und Num T*plus*

Die Spezial-Bedienfelder Num M*plus* und Num T*plus* werden über 2 LWL am CNC-Rack angeschlossen und gewährleisten folgende Funktionen:

- CNC-Bedienfeld mit Zahlentastatur, Betriebsartenund Teach-In Tasten (siehe "Betriebsart" Seite 4/25).
- Maschinenbedienfeld: Zyklus, Unterbrechung der Bearbeitung, Vorschubpotentiometer, Manipulatoren usw

Die Anzeige erfolgt auf einem 9"-Monochrom-Bildschirm (MS20) oder auf einem 10"- (CS20) oder 14"-Farbbildschirm (CS30).

Für die Programmierung und die Bearbeitung in FULL ISO wird der Bildschirm durch ein Bedienfeld (Bedienfeld mit Bildschirm CP30 oder LCD-Anzeige FS20 + Tastatur KBD30) ersetzt.

Funktionsbeschreibungen

Teileprogrammierung

RAM-Speicher für Teileprogramme und Makrobefehle

Best.-Nr. C...000 341

Speichermodul für Teileprogramm 32 kB

Dieser Bereich des globalen RAM-Speichers ist in vier Funktionsbereiche unterteilt:

- · Bereich 0: änderbarer Anwenderbereich.
- Bereich 1: geschützter Kundenbereich.
- Bereich 2: geschützter Herstellerbereich.
- Bereich 3: für Num reservierter Bereich.

Die Verriegelung der geschützten Bereiche durch ein Passwort sperrt den Zugang für nicht bevollmächtigte Personen, um das Know-How der "Bereichsinhaber" zu schützen und die Integrität des Betriebs der Maschine zu gewährleisten.

Residente Makrobefehle

Die residenten Makrobefehle sind von NUM, vom Integrator oder vom Hersteller entwickelte Teileprogramme, die in geschützte RAM-Bereiche geladen sind.

Diese Programme sind im ISO-Format und in strukturierter Programmierung geschrieben, um das Lesen und die Änderung zu erleichtern (Beispiel: personalisierte Bearbeitungszyklen).

Ausgabe der residenten Makrobefehle

Das in der CNC residente Dienstprogramm 3 ermöglicht den Transfer der Programme aus den geschützten Bereichen in den Anwenderbereich (Bereich 0), in dem die Programme geändert werden können.

Das erneute Speichern in den geschützten Bereichen erfolgt ebenfalls mit diesem Dienstprogramm.

Eingabe der Programme am Bedienfeld

Manuelle Dateneingabe

Die Betriebsart Modifikation ermöglicht die Bearbeitung, die Änderung und das Löschen von Programmen.

Die Programmierung kann satzweise nach Ausführung jedes Satzes in MDI erfolgen.

Die Programme können während der Bearbeitung geändert werden.

Programmierung in Betriebsart Teach-In

Die Betriebsart Modifikation gestattet:

- Den Zugang zu den Achsmanipulatoren und somit das Verfahren der Istposition
- Die Eingabe der Koordinaten der Istposition in das geänderte Programm.

Diese Funktion ermöglicht das teilweise oder ganze Schreiben eines Programms durch Teach-In von bestimmten Positionen. Die Koordinaten der Istposition werden mit dem Zeichen "!" aufgerufen.

Laden von Programmen

Die Werkzeugdaten sowie die Teileprogramme können über Peripheriegeräte (Bandlesegerät, PC, Diskettenlaufwerk) oder über einen Rechner geladen werden.

Ausführung des Programms in PPP-Mode

Wenn ein Programm sehr lang ist und nicht in den RAM-Speicher der CNC geladen werden kann oder das Programm nicht gespeichert werden soll (zum Beispiel ein Programm von einem CAD/CAM-System), kann dieses Programm direkt von einem Peripheriegerät oder einem Rechner gelesen und ausgeführt werden.

Ein in PPP-Mode ausgeführtes Programm unterliegt bestimmten Einschränkungen betreffs der Sprünge, Unterprogramme und Sätze für Notrückzug.

Änderung des Programms im Speicher

Die Betriebsart Modifikation ermöglicht die Erstellung oder Änderung eines Programms im Speicher oder auch das Löschen oder Umbenennen eines Programms.

Die Änderungen werden gespeichert, sobald sie eingegeben werden.

Diese Eingriffe an den Teileprogrammen können während der Bearbeitung erfolgen, d.h. im Hintergrund, in den Betriebsarten Automatik, Einzelsatz, Eilgang oder Handbetrieb.

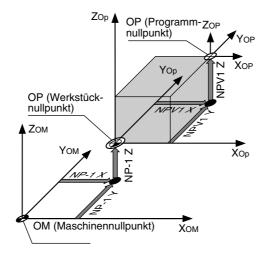
Funktionsbeschreibungen

Teileprogrammierung

Wahl des Nullpunktes: NPV und NPV3

Das System verarbeitet immer die Masse in Bezug auf einen Nullpunkt des Messsystems (Maschinennullpunkt), gleich welche Art der Programmierung gewählt ist.

Maschinennullpunkt (OM)


Dieser auf jeder Achse definierte Punkt bestimmt den absoluten Nullpunkt des Messsystems. Die Koordinaten dieses Punktes können über spezifische Maschinenparameter eingegeben und auch geändert werden.

Werkstücknullpunkt (Op)

Dieser Nullpunkt ist unabhängig vom Messsystem und durch einen Punkt des Werkstücks definiert, den man anfahren kann. Dieser Nullpunkt wird mit dem Parameter NPV, bezogen auf den Maschinennullpunkt, bestimmt.

Programmnullpunkt (OP)

Dieser Nullpunkt ist unabhängig vom Messsystem und ist der Nullpunkt des Bezugssystems, das zur Erstellung des Programms gedient hat. Dieser Nullpunkt ist über die Nullpunktverschiebung NPV1, bezogen auf den Werkstücknullpunkt, definiert.

Dynamischer Software-Endschalter

Die bei der Inbetriebnahme der Maschine eingegebenen Verfahrwege können durch dynamische Endschalter begrenzt werden. Eine Änderung dieser Grenzwerte kann sich als nützlich erweisen, um, entsprechend dem Werkstück oder dessen Umgebung, eine Kollision zu vermeiden. Externe Parameter im Programmkopf gewährleisten diese Funktion.

Diese Parameter sind aktiv ab der Stelle im Programm, an der sie stehen, bis zum Reset der CNC oder bis zum Programmende.

Hauptfunktionen

Programmierung der Verfahrwege

- Programmierung Absolut oder Inkremental.
- · Maschinen oder Programmnullpunkt.
- · Fliesskomma.
- · Zoll/Millimeterprogrammierung.
- Positionierung (G00), oder Linearinterpolation (G01), Kreisinterpolation (G02) (G03), Helixinterpolation, Spline oder Vieleckbearbeitung.
- Positionierung auf eine Entfernung R von einem programmierten Punkt.
- Programmierung von Geraden und Kreisen in kartesischen oder Polarkoordinaten.
- Anschluss von Geraden und/oder Kreisen mit Fasen oder Radien
- Satzverkettung auf Verfahrwegen oder präziser Halt, um den Schleppfehler aufzuheben (G09) und so die Durchfahrpunkte exakt einzuhalten.

Vorschubfunktionen

- Vorschub F.. von 0,000001 mm/min bis 200 m/min.
- Spezifischer Vorschub für Radien und Fasen bei Konturzugprogrammierung (PGP).
- Programmierbarer Eingriff mit M12.
- · Tangentieller Vorschub G92 R.
- · Modulierbare Beschleunigung mit EG.

Bearbeitungszyklen

Es sind Bearbeitungszyklen zum Drehen, Fräsen, Abwälzfräsen und zur Bearbeitung von Zahnrädern verfügbar. Sie können angepasst werden. Zyklen können für Technologien oder Spezialmaschinen personalisiert werden (siehe Rubrik "Bearbeitungszyklen").

Programmiersprache ISO/EIA

Die Ein- und Ausgabe der Daten erfolgt im ISO- oder EIA-Code mit automatischer Erkennung des vom System verwendeten Code. Die Daten werden im statischen RAM-Speicher gespeichert.

Allgemeines Format:

%.....

N..... Satznummer

G... Vorbereitende Funktionen XYZ+7.1 oder 6.2 oder 5.3 oder 4.4 oder 3.5 Verfahren der Achsen

UVW+7.1 oder 6.2 oder 5.3 oder 4.4 oder 3.5

Verfahren der Hilfsachsen

ABC+3.3 oder 3.4

Verfahren der Rundachsen

IJK+5.3 Koordinaten des KreismittelpunktesEA3.3 Winkel eines KegelsEB5.3 Fase oder Radius

EC3.3 Achse der indexierten Spindel ED3.3 Programmierte Winkelverschiebung

R5.3 Kreisradius
F.... Vorschub
M... Hilfsfunktionen
S.... Spindeldrehzahl
T.... Werkzeugnummer

D... Nummer des Korrekturschalters

L... Programmvariable
E.... Externer Parameter

H.... Nummer des Unterprogramms

/ Satz ausblenden.

Funktionsbeschreibungen

Teileprogrammierung

Unterprogramme (G77)

Die Unterprogramme sind spezifische Programmeinheiten, die vom Hauptprogramm aus aufgerufen werden und vom Integrator, von Num (wie die Makrobefehle) oder vom Anwender zur Vereinfachung und Optimierung des Hauptprogramms erstellt wurden.

Beispiel: Wiederholung einer Figur an verschiedenen Stellen.

Die Unterprogramme werden mit den funktionsbedingten Adressen H.. und / oder N.. N.. aufgerufen.

G77 Unbedingter Aufruf eines Unterprogramms oder einer Satzfolge (maximal 8 Verschachtelungen von Unterprogrammen)

H Nummer des externen Unterprogramms

N..N.. Nummer des ersten und des letzten
aufgerufenen Satzes

P.. Nummer der mit der Funktion PROFIL erstellten Kontur (siehe Abschnitt Teileprogrammierung - PROFIL)

S.. Anzahl der Wiederholungen eines Unterprogramms oder einer Satzfolge (maximal 99).

Unterprogramme können auch von der SPS oder durch eine M-Funktion aufgerufen werden.

Parametrierte Programmierung

Die Parameterprogrammierung vereinfacht die Programmierung und erleichtert die Erstellung von Programmreihen.

Die Programmvariablen L und die externen Parameter E können jeder Adresse im Programm zugeordnet werden. Es können folgende Operationen mit Parametern ausgeführt werden:

- Addition, Subtraktion, Multiplikation, Division, Quadratwurzel, Abrunden, Sinus, Kosinus, Arkus-Tangens
- Unbedingter oder bedingter Sprung (>, <, =), logisches UND, ODER.

Strukturierte Programmierung

Best.-Nr. C...000 535

Die strukturierte Programmierung und die Symbolvariablen gewährleisten eine bessere Lesbarkeit und eine bessere Übersicht der Programme.

Die Symbolvariablen (1 bis 8 Zeichen) können jeder ISO-Funktion zugeordnet und in Parameterausdrücken verwendet werden.

Die Sicherung der L-Variablen und die Reservierung der Symbolvariablen erfolgen in einem Stapel am Ende des Speichers.

Erstellung einer Tabelle zum Ablegen von Profilen (Funktion "BUILD")

Best.-Nr. C...000 536

Diese Programmierung wird zur Erstellung einer Tabelle zum Ablegen der Daten einer Kontur während des Lesens der entsprechenden Sätze verwendet (Masse der Achsen, Funktionen F, T, S).

Der Zugang zu den Daten dieser Tabelle und deren Nutzung erfolgt über die strukturierte Programmierung.

Transfer der aktiven Werte (G76)

Best.-Nr. C...000 511

Diese Funktion dient zur Aktualisierung einer Datei in einem Unterprogramm oder in einer Satzfolge des Hauptprogramms.

Die Datei der L-Variablen und der E-Parameter wird mit den entsprechenden neuen und aktiven Daten aktualisiert.

Syntax:

G76 Transfer der aktuellen Werte der L-Variablen und E-Parameter in das angegebene Programm

H Bezeichnung des Programms, in das die Werte übertragen werden

N..N.. Bezeichnung der Satzfolge des Programms, an die die Werte übertragen werden

H%.. (Beispiel und Form der Datei, in die die Werte übertragen werden).

N.. Lxx=...... E8...= | | | N.. E5....=

Massstabsfaktor (Scaling) (G74)

Best.-Nr. C...000 506

Die Eingabe eines Massstabsfaktors über die Tastatur ändert die Abmessungen der zu bearbeitenden Werkstücke.

Dieser Faktor wird in Tausendstel der programmierten Abmessungen ausgedrückt und ermöglicht eine Veränderung von 0,001 bis 9,999.

Programmierte Winkelverschiebung, Partrotation (ED...)

Best.-Nr. C...000 507

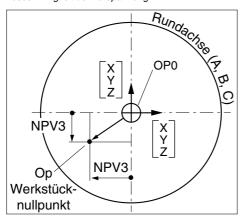
Die Funktion ED definiert, in Verbindung mit einem Wert, die Drehung um einen Winkel, bezogen auf den Programmnullpunkt. Die Winkelverschiebung beeinflusst die programmierten Achsen der Arbeitsebene in den Sätzen nach dem Aufruf der Funktion.

Beispiel: Bohren von Löchern auf einem Lochkreis. Rotation von Kontursequenzen.

Funktionsbeschreibungen

Teileprogrammierung

Exzentrizitätskompensation


Diese Funktion gilt für die Rundachsen A, B oder C.

Die Verschiebungen können durch Eingabe der Werte wie folgt aktiviert werden:

- · auf der CNC im Anschluss an die Betriebsart NPV
- durch E-Parameter
- · durch Datenaustausch zwischen Prozessoren.

Beim Positionieren berücksichtigt die Aussermittigkeit der Aufspannung eine theoretische Verschiebung der Drehung des Werkstücks bezogen auf die Drehung der Platte, gleich in welcher Position sich diese befindet.

Aussermittigkeit der Aufspannung.

Konturzugprogrammierung (PGP)®

Diese ISO-Programmiersprache ermöglicht die Bearbeitung von Werkstücken mit komplexer Geometrie bestehend aus Anschlüssen von geometrischen Elementen (Gerade und Kreise).

Hauptfunktionen

- Einfügen von Fasen und Radien
- Mehrere Definitionen von Geraden
- Mehrere Definitionen von Kreisen
- Mögliche Deklaration von 1 bis 3 aufeinander folgenden Elementen, wobei das System die Einfügeoder Berührungspunkte selbstständig berechnet.

PROFIL

PROFIL ist ein interaktives Grafikprogramm der CNC für die grafische Definition von 2D-Konturen ohne Verwendung der ISO-Programmierung.

PROFIL erleichtert die Erstellung ganzer oder teilweiser Werkstückkonturen, bestehend aus verketteten, geometrischen Elementen (beliebige Konturen oder vordefinierte Konturen wie Rechtecke, Kreise oder Vielecke).

Die geometrischen Elemente werden nacheinander über die Funktionstasten des Bedienfeldes gewählt und aufgerufen.

PROFIL ist interaktiv und bietet dem Bediener eine ständige Unterstützung durch eine sofortige Anzeige der in der Erstellung befindlichen Konturen. Die Grafikhilfe liefert dem Bediener alle erforderlichen Informationen zur Ausführung von Korrekturen und schlägt ihm unterschiedliche Lösungen vor, wenn mehrere Möglichkeiten vorhanden sind.

Alle erstellten, geometrischen Einheiten können im Nachhinein manipuliert werden: Spiegelung, Massstabsfaktor, Drehung, Verschiebung, Übermass bezogen auf die Endkontur. Eine systeminterne Übersetzungsfunktion erstellt die ISO-Programmierung, die dem vom Bediener erstellten Profil entspricht. Das daraus sich ergebende Unterprogramm kann vom auszuführenden Hauptprogramm aus aufgerufen

2D-Grafik-Simulation

Diese Funktion ermöglicht die Darstellung der Endkontur und der Bearbeitungsdurchläufe in der Ebene. Kontur und Werkzeug werden real mit Zoom und Äquidistanten dargestellt. Beim Drehen beinhaltet diese Funktion eine dynamische Simulation der Bearbeitung (Radiergrafik).

3D-Grafik

Best.-Nr. C...000 158

Beim Fräsen ermöglicht diese Funktion, über die Funktionstaste 3D-Grafik, in Verbindung mit der Rohteildefinition und den Werkzeugabmessungen, die Anzeige eines programmierten Werkstücks unter verschiedenen Blickwinkeln:

- Projektion der Arbeitsebene, Drehung um + 90° um die gewählte Achse
- 3D-Vergrösserung und Darstellung von mehreren Ansichten auf der gleichen Bildschirmseite (Frontansicht, Ansicht von links, im Schnitt und im rechtwinkligen Schnitt zur gewählten Achse).

Diese Funktion steht sowohl bei ISO-Programmierung als auch bei PROCAM zur Verfügung.

Bildschirmausdruck (Hard copy)

Diese Funktion ermöglicht die Ausgabe des auf dem Bildschirm der CNC dargestellten Bildes auf dem Drucker oder im Format einer Datei (Bitmap-Datei).

Funktionsbeschreibungen

Teileprogrammierung

Diagnose: Maschinenmeldungen

Die Zeilen der Meldungen können vom SPS-Programm auf dem Bedienfeld der CNC angezeigt werden. Diese Meldungen müssen bei der Installation in einem dafür vorgesehenen Unterprogramm geladen werden.

Das SPS-Programm ruft die entsprechende Zeile der anzuzeigenden Meldung auf und schreibt diese Nummer in den dafür vorgesehenen Datenaustauschbereich.

Diagnose: CNC-Meldungen

Die CNC verwaltet automatisch 2 Arten von Fehlermeldungen:

Meldungen von Teileprogrammen

- Fehler bei der Parameterprogrammierung
- Fehler bei der Konturzugprogrammierung (PGP)
- · Fehler bei der strukturierten Programmierung
- Fehler bei der Programmierung von Zyklen

Fehlermeldungen der Maschine

- Verfahrbefehl ausserhalb der Verfahrwege der Maschine
- Fehler der Achsen (Adressierung, Schleppfehler, Synchronisierung usw).

Die CNC liest und sendet Meldungen, die im Teileprogramm in folgender Syntax ("\$") geschrieben wurden:

- \$0, Ausgabe der Meldung auf die Anzeige
- \$1, Ausgabe der Meldung an die SPS
- \$2 \$3 \$4, Ausgabe der Meldung an einen entfernt gelegenen Server
- \$5 und \$6, Ausgabe der Meldung an ein externes Peripheriegerät, ohne vorgeschriebenes Protokoll
- \$9, Ausgabe einer einfachen Meldung (oder mit Warten auf Antwort) an das PC-Modul eines PCNC-Systems.

Interaktive Programmierung PROCAM

Die Teileprogrammierung erfolgt durch interaktive Programmierung anhand von Figuren und vordefinierten Bearbeitungszyklen. Es sind Module für vier Technologien lieferbar:

- PROCAM MILL (Fräsen)
 Best.-Nr. C...000 113 und C...000 238
- PROCAM MX (Dreh-/Fräszentrum) Best.-Nr C...000 134
- PROCAM TURN (Drehen)
 Best.-Nr. C...000 113 und Best.-Nr. C...000 239
- PROCAM MULTITURN (Drehen mit mehreren Schlitten) Best.-Nr. C...000 133

Der Programmierer erstellt sein Programm durch Ausfüllen von zwingenden oder freien Datenfeldern, die auf den Bildschirmseiten von PROCAM vorgeschlagen werden.

Die Ergonomie der Verkettung dieser Bildschirmseiten hängt von der Technologie ab und unterstützt den Bediener bei der Erstellung der Bearbeitungsfolgen und seiner Bearbeitungsstrategie.

Das System berücksichtigt automatisch die technologischen Daten, d.h. die Verwaltung der Schnittbedingungen entsprechend der Informationen in den Materialdateien und der zur Bearbeitung verwendeten Werkzeuge. Diese Funktion bietet eine erhöhte Sicherheit bei der Programmierung.

NUMAFORM

Best.-Nr. C...000 917

NUMAFORM® ist ein in der CNC integrierter Programmbaustein und bietet die Möglichkeit der Bearbeitung von konkaven oder konvexen, dreidimensionalen Formen, wie Mantelflächen einer beliebigen Achse, Formen, bestehend aus elementaren Flächen oder komplexen Flächen, die durch Schnitte entlang zwei Führungslinien definiert sind.

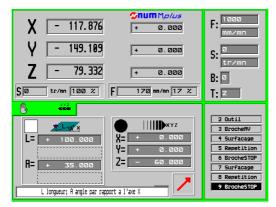
Das Anwenderprogramm ruft jeden der drei Makrobefehle, entsprechend der zu bearbeitenden Figur auf, nachdem es die Werte der erforderlichen Variablen übergeben hat.

Der Programmierer kann das Ergebnis mit der Option "3D-Grafik" kontrollieren.

Funktionsbeschreibungen

Num Mplus und Tplus

Num Mplus/Num Tplus


Fräsen und Drehen durch Teach-In

Num Mplus und Num Tplus sind sowohl für erfahrene Dreher, als auch für Anfänger hilfreich und ermöglichen ein leichtes Erlernen der Bearbeitung und die Bedienung der Maschine.

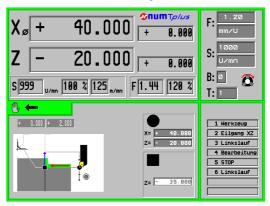
Handbetrieb

Die Bearbeitung erfolgt mit Handrädern, wie bei einer herkömmlichen Fräs- oder Drehmaschine:

- Beim Fräsen erfolgt die achsparallele Bearbeitung mit drei Handrädern und die Linear- und Kreisbearbeitung in der Ebene mit einem Handrad;
- Beim Drehen ermöglicht die Bearbeitung mit den Handrädern Längsdrehen, Plandrehen und konisches Drehen durch Verwendung der programmierbaren Endschalter, falls erforderlich.

Handbetrieb mit Unterstützung

Dem Bediener stehen mehrere Bearbeitungsgänge mit Freifahren des Werkzeugs zur Verfügung:


- Beim Fräsen: Schlichten in eine oder in beide Richtungen, lineares und kreisförmiges Konturfräsen, Bohren, Gewindeschneiden und Ausbohren, Bearbeitung von Taschen und Vertiefungen;
- Beim Drehen: Längsdrehen, Plandrehen, konisches Drehen, Radius, Nute, Gewinde und Profil.

Automatikzyklus

Die automatische Bearbeitung mit Schrupp- und Schlichtzyklen ermöglicht folgende Bearbeitungen:

- Beim Fräsen: Schlichten in eine und in beide Richtungen, lineares und kreisförmiges Konturfräsen, lineares und kreisförmiges Nutenfräsen, Bearbeitung von Taschen und Vertiefungen, Bohren, Gewindeschneiden und Ausbohren, Punkteprofil; Wiederholungsraster (linear, rechteckig und kreisförmig) stehen für alle Zyklen zur Verfügung;
- Beim Drehen: Längsdrehen, Plandrehen, konisches Drehen, Radius, Nute, Gewinde, Bohren, Gewindeschneiden und Profil.

Automatische Wiederholung


Die automatische Bearbeitung ermöglicht die Bearbeitung von Losen mit identischen Werkstücken bei hoher Präzision und Qualität.

Editor Light ISO

Best.-Nr. C...000 412

Die Erstellung von Bearbeitungsprogrammen erfolgt durch Wahl der verschiedenen Bearbeitungs-Symbole. Die automatische Erstellung der vorformatierten ISO-Sätze unterbindet Syntaxfehler und spart wertvolle Zeit.

Diese Option ermöglicht auch die Grafiksimulation des Werkzeugweges, das Ein- und Auslesen von Teileprogrammen und die Ausführung von ISO-Teileprogrammen der Baureihe NUM 1000.

Editor Full ISO

Best.-Nr. C...000 593 (umfasst die Option 000 412)

Mit einem Bildschirm CP30 oder mit LCD-Anzeige FS20 anstelle des Bildschirms und der Tastatur KBD30 sind alle ISO-Funktionen zur Erstellung, Änderung und Grafiksimulation der Teileprogramme verfügbar.

Funktionsbeschreibungen

Integration und Personalisierung der Systeme

Eine offene Struktur für den Integrator

Die Produkte der Baureihe Num Power 1000 zeichnen sich durch eine völlige Offenheit des Systems für den Integrator aus und ermöglichen ihm ein besseres Umsetzen seines Know-How und eine bessere Anpassung an die verschiedensten Maschinen.

Ausserdem sind die Systeme modular und können einfach durch Zusatz von Hard- und Software-Optionen erweitert werden.

Die verschiedenen Merkmale dieser offenen Struktur sind:

in Bezug auf die Bedieneroberfläche

- Die Verfügbarkeit der PC-Funktion (PC-Bedienfeld FTP41), was eine völlige Freiheit bei der Integration gewährleistet;
- Die PC-Software MMITool zum Erstellen von personalisierten und an jeden Maschinentyp angepassten Bildschirmseiten mit Verkettung der entsprechenden Bildschirmseiten;
- Der PROCAM-Interpreter, eine residente Software, die die Ergonomie der Bildschirmseiten zur spezifischen Teileprogrammierung einer gegebenen Technologie gewährleistet;
- Der Direktbetrieb der SPS.

in Bezug auf Bearbeitungszyklen und Interpolationen

- Die dynamischen Operatoren sind ein Hilfsmittel bei der Online-Entwicklung von CNC-Applikationen in Bezug auf Achsen, Ein-/Ausgänge usw.;
- Die Makrobefehle, insbesondere die im Teileprogramm mit G-Funktionen aufgerufenen Zyklen, können geändert oder neue Zyklen erstellt werden:
- Die strukturierte Programmierung erleichtert das Lesen und die Änderung dieser Zyklen.

in Bezug auf die Integration der Systeme

- Das Dienstprogramm 12 oder die Software PERSOTool ermöglichen die einfache Neukonfiguration der Optionen des Systems anhand der Übertragung eines Optionsschlüssels mit schnellen Kommunikationsmitteln;
- Die Hilfsmittel PLCTool für die Programmiersprache Ladder, die C-Sprache und der entsprechende Compiler ermöglichen das Schreiben von SPS-Applikationen auf PC.
- SETTool ist eine Software auf PC zur Einstellung der Inbetriebnahmeparameter.

Landessprache der Systeme

Die Sprachen französisch, englisch, deutsch, italienisch, spanisch und schwedisch sind in der Grundausführung der Systeme enthalten. Die Wahl der gewünschten Sprache erfolgt im System durch Maschinenparameter bei der Inbetriebnahme.

PC-Funktionen

Im Verbund CNC und PC übernimmt die CNC die Prozess-Steuerung (Ansteuerung der Achsen und Verwaltung der SPS-Funktionen der Maschine) und der PC die anwenderspezifischen Applikationen (Bedieneroberfläche, Applikationsprogramme der Technologie, hochstehende Programmiersprachen Typ CAD/CAM) sowie herstellerspezifische Applikationen (Hilfsmittel für die Unterstützung bei der Wartung, Kontrolle der Maschine).

Der PC unterstützt zahlreiche Technologie-Applikationen, die in dieser Umgebung entwickelt wurden. Ausserdem ist er eine interessante Ergänzung der Speicherkapazität, was die Leistungsfähigkeit und die Schnelligkeit der Bearbeitung erhöht.

PC-Bedienfeld FTP41

- Industrie-PC FTP41: Best.-Nr. C...000 480.
- mit Windows 98: Best.-Nr. C...000 480
- mit Windows 2000: Best.-Nr. C...000 490
- Industrielle PC-Tastatur KBD-PC: Best.-Nr. C...000 482

Das PC-Bedienfeld ist in Verbindung mit den CNC Num Power die ideale Plattform für die Entwicklung eigener Bedieneroberflächen für jede Applikation.

Es handelt sich um einen kompletten PC mit:

- Pentium-Prozessor oder gleichwertig
- Festplatte grösser als 1,66 GB
- LCD-Farbbildschirm 10,4" TFT
- Diskettenlaufwerk 3,5" auf der Vorderseite
- 6 Steckplätze für Erweiterungskarten ISA und PCI
- · Betriebssystem Windows 98 installiert.

Es wird mit dem Software-Paket für PC-Bedienfeld geliefer (siehe Seite 4/20).

Die Verbindung mit der CNC erfolgt durch eine serielle Schnittstelle 115 kBaud.

Dieses Bedienfeld kann in Verbindung mit dem Maschinenbedienfeld MP02 gleicher Breite verwendet werden.

Funktionsbeschreibungen

Integration und Personalisierung der Systeme

PROCAM-Interpreter

Dieses integrierte Hilfsmittel ermöglicht eine maschinenspezifische oder technologiespezifische Oberfläche zur interaktiven Teileprogrammierung durch Erstellung von:

- · Menüs, Abbildungen
- Bildschirmmasken mit Ausfüllen der Felder, Verkettung von Bildschirmseiten.

Bildschirmanwahl (SPS-Bildschirm)

Diese Betriebsart dient zur Erstellung von Bildschirmseiten, in Verbindung mit den Maschinenschnittstellen (Werkstückhandhabung, einfache Werkzeugwechsler usw.) zur Anzeige oder einfachen Bedienung.

Sie wird mit PLCTool programmiert (Standard-Programmierung der SPS auf PC).

Bei einem komplexen Programm (komplizierte Bildschirmseiten mit Blockschema, Verkettung von diversen Funktionen, Kontexte usw.) sollte man vorzugsweise das Hilfsmittel zur Personalisierung, MMITool, verwenden, das hier besser geeignet ist.

CNC-residente Dienstprogramme

Dienstprogramme sind in der CNC residente Hilfsmittel, die folgende Funktionen gewährleisten:

Dienstprogramm 2: Spindelsteigungsfehler-kompensation (siehe Funktionen der Achsen).

Dienstprogramm 3: Residente Makrobefehle (siehe Teileprogrammierung, RAM-Speicher)

Dienstprogramm 5: Maschinenparameter.

Die Maschinenparameter ermöglichen die Anpassung der CNC an die Maschine:

- Deklaration der Achsen
- Einstellung des Messsystems
- Einstellung der Ansteuerungen
- Verfahrwege der Achsen
- Einstellung der Spindeln
- Kommunikation (Schnittstelle PLCTool, DNC1, ETHWAY, Uni-Telway)
- Diverse Parameter (Berücksichtigung der Hilfsfunktionen, Verzweigung auf Unterprogramme durch M-Funktionen usw.).

Dienstprogramm 12: Verriegelung der Optionen (siehe Seite 4/20).

Dienstprogramm 20: Inter-Achs-Korrektur (siehe Seite 4/6).

Dynamische Operatoren

Best.-Nr. C...000 250

Diese leistungsstarke Programmiersprache öffnet den Kern der CNC.

Anhand von einfachen Operationen kann man Echtzeit-Berechnungen ausführen, die direkt auf die Position der Achsen, auf digitale oder analoge Ein- und Ausgänge wirken

Dieses Hilfsmittel ermöglicht auch den Datenaustausch mit dem SPS-Programm, sowie die Möglichkeit der sofortigen Korrektur, entsprechend der Umgebung.

Die dynamischen Operatoren werden im Programmkopf (Anwenderprogramm %) mit der RTC-Frequenz der CNC verarbeitet und behindern in keiner Weise die von der CNC-Software verwalteten Funktionen. Sie sind besonders in Applikationsprogrammen zur Beeinflussung der Achsen und anderen schnellen Aufgaben nützlich.

Dynamische Operatoren in C

Best.-Nr. C...000 249

Anwendung der C-Sprache zur Programmierung von Applikationen mit dynamischen Operatoren.

C-Compiler

Best.-Nr. C 999 082 026

Diese Software wird auf einem PC, oder kompatiblen, in der Umgebung PLCTool installiert und ermöglicht das Schreiben von C-Applikationen (SPS, Bedieneroberfläche und Online-Funktionen mit dynamischen Operatoren).

Funktionsbeschreibungen

Integration und Personalisierung der Systeme

MMITool

Best.-Nr. C999 182 096: MMITool 32 Bit auf CD Best.-Nr. C...000 946: MMI-Interprete

MMITool wurde zur Entwicklung von spezifischen Bedieneroberflächen für alle Maschinen und Applikationen konzipiert.

Die Aufteilung der Vorgehensweise in Kontexte ermöglicht die Anpassung der Bedieneroberfläche an jede Kategorie der eingreifenden Personen: Programmierer, Einrichter, Bediener und Wartungspersonal.

Die kompilierten Dateien werden in einen reservierten Bereich des RAM-Speichers der CNC geladen. Der MMI-Interpreter gewährleistet den Betrieb dieser Schnittstelle durch die CNC.

MMI-Speicher

Best.-Nr. C...000 377 MMI-Speicher für Ressourcen Best.-Nr. C...000 378 MMI-C-Speicher

Dieser Speicher dient zur Aufnahme der mit MMITool erstellten Dateien der Bedieneroberfläche (personalisierte Bildschirmseiten).

Der MMI-Speicher ist in zwei Bereiche unterteilt:

- Einen Bereich für die MMI-Ressourcen zur Aufnahme der Dateien für die Beschreibung der Bildschirmseiten
- Einen Bereich für die Programmiersprache C zur Aufnahme der dynamischen, in C geschriebenen Bildschirmseiten.

PCToolKit

Best.-Nr. C999 182 091: PCToolKit 32 Bit auf CD

PCToolKit erleichtert die Realisierung von unter Windows ausführbaren Applikationen, die auf dem PC-Bedienfeld oder auf einem externen PC laufen. PCToolKit erlaubt u.a.:

- Transfer aller Systemdateien (Teileprogramme, Dienstprogramme, SPS-Programm)
- Hilfsmittel, Positionen, Geschwindigkeiten, CNC-Variablen
- SPS-Variablen und Datenaustauschbereich CNC/SPS.

Die Mechanismen dieses Datenaustauschs sind für den Anwender transparent.

PLCTool: Programmiersprache Ladder

Best.-Nr. C999 182 095: 1 Lizenz PLCTool 32 Bit auf CD Best.-Nr. C999 182 195: 5 Lizenzen PLCTool 32 Bit auf CD Best.-Nr. C999 182 295: 10 Lizenzen PLCTool 32 Bit auf CD

PLCTool ist eine PC Software zur Entwicklung, Optimierung und Wartung der SPS-Applikation der CNC.

Sie ermöglicht:

- Die Verwaltung der Software der Maschine durch Erstellung einer Modulbibliothek;
- Die Programmierung in Ladder in Verbindung mit komplexen mathematischen Berechnungen;
- Die symbolische Verwaltung der Daten (12 Zeichen);
- Die Erstellung einer kompletten Dokumentationsakte mit Querverweisen;
- Der Zugang zu einer Bibliothek mit Sonderfunktionen;
- Die Online-Simulation von Ablaufschemen und Variablen.

SETTool

Best.-Nr. C999 182 092: 1 Lizenz SETTool 32 Bit auf CD Best.-Nr. C999 182 192: 5 Lizenzen SETTool 32 Bit auf CD

Diese Software wird auf einem PC installiert und dient zur Einstellung der analogen und digitalen Antriebsparameter.

Sie besitzt Funktionen zur Optimierung, bestimmt die Parameter der Achse analytisch und umfasst einen Generatorfür Spannungsebenen und ein elektronisches Oszilloskop.

PERSOTool

Best.-Nr. C999 182 094; PERSOTool 32 Bit auf CD

Diese Software auf Diskette wird auf einem PC installiert und dient zur Eingabe und zum Transfer der Personalisierungsparameter des CNC-Systems.

NUMBackUp + Edit Part Program

Best.-Nr. C999 182 093: NUMBackUp 32 Bit auf CD

NUMBackUp ist eine Software auf PC zur Sicherung und dem Transfer aller CNC-Dateien, CNC- und SPS-Programmen, Maschinenparameter, Werkzeugdateien, usw.

Edit Part Program ist ein Programm zur Bearbeitung und zum Ein- und Auslesen von Teileprogrammen in der CNC. Es ermöglicht auch die Ausführung eines Teile-programms auf der Festplatte eines PC-Bedienfeldes FTP41 oder auf einem entfernten Server, wenn das Bedienfeld vernetzt ist.

Funktionsbeschreibungen

Kommunikation

Serielle Schnittstellen

Alle Schnittstellen können über ein CNC- oder SPS-Menü parametriert werden (Schnittstellen 0 bis 2). Sie können Verbindungen zum Einlesen/Auslesen von Programmen zugeordnet oder von der SPS für den Betrieb mit spezifischen Protokollen programmiert werden:

- Peripheriegerät
- Diskettenlaufwerk
- · Uni-Telway.

Sie können auch der Verbindung mit der Software für die SPS-Programmierung PLCTool zugeordnet werden.

Typen der verfügbaren Schnittstellen:

- Verbindung RS 232 mit Betriebssignalen
- Über Software und Verdrahtung konfigurierbare Verbindung: RS 232 einfach, RS 422 oder RS 485.

Inter-Coprozessor (DNC 1000)

Best.-Nr. C...000 112

Diese Option erweitert den Datenaustausch zwischen der SPS und den CNC-Funktionen. Sie ermöglicht die Übertragung der Informationen (Bit und Worte), die nicht über den normalen Datenaustauschbereich zugänglich sind. Diese Informationen umfassen die Achsen, Spindeln, Werkzeuge, Parameter, Teileprogramme, Meldungen usw.

Der Datenaustausch erfolgt über eine Anforderung (Lesen/Schreiben). Allgemein ist die SPS der Client und die CNC der Server. Auch das Teileprogramm kann einen Datenaustausch zur SPS hin anfordern.

Dieser Datenaustausch ist die Basis für die Integration einer Maschine in ein flexibles Automatisierungssystem.

Anschluss an ein Netz Uni-Telway

Best.-Nr. C...000 911

Uni-Telway ist eine Kommunikationsnorm zwischen Komponenten einer Automationseinheit: CNC, SPS, Dialogterminal usw.

Der Bus Uni-Telway und sein Protokoll Uni-TE ermöglichen den Datenaustausch (Lesen/Schreiben) und die Koordination der Aktivitäten zwischen den intelligenten Anlagenteilen.

- Die Verbindung erfolgt über eine der seriellen Schnittstellen der Grundausführung der CNC oder über ein spezifisches Modul.
- Das Protokoll (Master oder Slave) wird über Maschinenparameter gewählt.

Anschluss an ein Netz Fipway

Best.-Nr. C...000 924

Fipway ist ein Zellennetz (SPS-CNC-Kopfsteuerung).

Kenndaten:

- Durchsatz 1 Mbit/sek
- Bis zu 32 Arbeitsplätze an gleichen Segment
- · Länge des Netzes: 1000 m ohne Leitungsverstärker
- Verteilte Datenbank mit 128 Worten, die automatisch aktualisiert wird (gemeinsame Worte)
- Mailsystem Uni-TE mit Funktionen Server und Client* (Zugang zu den CNC- und SPS-Objekten)
- Prioritäre Kommunikation (Telegramm mit 16 Byte).

Die Funktion Client erfordert die Option "Inter-Coprozessor (DNC 1000)" Best.-Nr. C...000 112.

Inhaltsverzeichnis

Servomotoren BPH, BPG, BML und BHL	Seite
Allgemeines Anwendungsbereiche Kenndaten Drehmoment-Drehzahl Allgemeine Daten Standbremse Besonderheiten der Motoren Identifizierung der Motoren	5/3 5/3 5/3 5/3 5/4 5/4 5/5
Detaillierte Daten Abmessungen	5/7 5/8
Gebervorbereitung (Motoren BPH/BPG 075 bis 190)	5/11
Spindelmotoren AMS-IM	
Allgemeines - Anwendungsbereich Kenndaten Leistung-Drehzahl Allgemeine Daten Besonderheiten der Motoren Geräuschpegel Identifizierung der Motoren Detaillierte Daten Abmessungen	5/13 5/13 5/13 5/13 5/14 5/14
Spindelmotoren AMR250	
Allgemeine Daten, Identifizierung Abmessungen	5/17 5/18
Motoren Motorspindle® (MSA-MSS)	
Allgemeines - Anwendungsbereich Allgemeine Daten Identifizierung der Motoren Geber Abmessungen	5/19 5/19 5/20 5/20 5/21
Zubehör: Stecker für Motoren	
Stecker für Servomotoren Stecker für Spindelmotoren	5/22 5/23
Zubehör: Kabel	
Allgemeines Kabel für Servomotoren Kabel für zusätzlichen Achsgeber Kabel für Spindelmotoren Abmessungen und Zusammenstellungen der Motorenkabel	5/24 5/24 5/25 5/26 5/27

Achtung

Die Servo- und Spindelmotoren NUM DRIVE sind in Klasse H ausgeführt (außer BPH055) und deren Betriebstemperatur darf maximal 140° C betragen.

Treffen Sie gegebenenfalls die erforderlichen Maßnahmen, um Berührungen des Motors und somit Verbrennungen zu vermeiden

Servomotoren BPH, BPG, BML und BHL

Allgemeines

Die bürstenlosen Servomotoren NUM DRIVE besitzen Magnete aus Samarium-Kobalt, was ihnen eine hohe Leistung, eine grosse Drehzahldynamik, eine sehr geringe Trägheit des Rotors verleiht und geringe Abmessungen gewährleistet.

Der sinusförmige Strom der Antriebsverstärker sichert einen absolut gleichmässigen Lauf selbst bei niedrigen Drehzahlen zu.

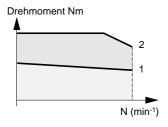
Der thermische Schutz erfolgt durch einen in den Motoren integrierten Thermofühler.

Anwendungsbereiche

Motoren BPH: Werkzeugmaschinen, Schleifmaschinen (in Ausführung IP67), Roboter und automatische Spezialmaschinen.

Motoren BPG: Dank ihrer großen Trägheit und hohen Steifigkeit sind sie besonders für folgende Applikationen geeignet:

- Maschinen mit direkter Kopplung Motor-Kugelrollspindel
- Maschinen mit stark schwankendem Massenträgheitsmoment je nach Anwendung
- Maschinen mit geringer Steifigkeit im Antriebsstrang.


Motoren BML: Applikationen, die einen besonders kompakten Motor erfordern.

Motoren BHL: Applikationen, die sowohl hohe Drehzahlen als auch hohe Drehmomente erfordern. Dieser Motor ist besonders für große Maschinen geeignet. Es existiert auch eine Version mit Zwangslüftung, was die Abmessungen und die Leistungen optimiert.

Kenndaten Drehmoment-Drehzahl

Die Kenndaten für Dauer- und maximales Drehmoment sind von der Drehzahl des Motors entsprechend nebenstehender Abbildung abhängig:

- 1: Dauerdrehmoment des Motors
- 2: maximales Drehmoment abhängig vom zugehörigen Antriebsverstärker.

Allgemeine Daten

Die Motoren BPH/BPG bieten zwei Vorteile:

- Die Stecker für Leistung und Geber sind um jeweils 90° vom Kunden ausrichtbar
- Standard-Schutzart des Motors (Gehäuse/Welle): IP65/65
- Möglichkeit der Schutzart IP67/67.

Anmerkung:

Die Stecker der Motoren BPH/BPG sind anders als die der Motoren BMH/BMG. Folglich müssen beim Auswechseln der Motoren BMH/BMG durch die Motoren BPH/BPG die im Kapitel «Kabel» auf Seite 5/25 beschriebenen Adapter verwendet werden.

Kenndaten

- Allgemeine Daten entsprechend Norm CEI 34-1.
- Schutzart des Motors: IP 65 entsprechend der Norm CEI 529 (außer BHL mit Zwangslüftung).
- · Geberanschluss über Stecker.
- · Thermischer Schutz durch PTC-Sonde in der Wicklung.
- Isolationsklasse der Wicklungen: H (180 °C) nach VDE 0530 außer Motor BPH 055.
- Exzentrizität, Konzentrizität und Rechtwinkligkeit zwischen Flansch und Welle nach DIN 42955 R.
- Flansch nach CEI 72-2.
- Wellenabgang und Passfeder nach CEI 72-1.
- Zulässige Montagepositionen: IMB5 IMV1 IMV3 nach DIN 42950
- Betriebstemperatur: 0 bis 40 °C.
- Auswuchten des Rotors: Klasse S gemäß ISO 2373 (durch einen Keil realisiert).

Die spezifisichen Daten der Motoren BPH, BPG, BML und BHL werden auf den folgenden Seiten beschrieben.

Servomotoren BPH, BPG, BML und BHL

Haltebremse

Die optional integrierte Bremse der Motoren BPH und BHL ist eine Dauermagnetbremse, welche im stromlosen Zustand aktiv ist (Bremszustand). Es handelt sich hier um eine Haltebremse und nicht um eine dynamische Bremse. Sie kann jedoch im Notfall 1800 bis 2000 Bremsungen ausführen.

Stromversorgung 24 V=, +5% -10%.

Anmerkung: Die Antriebsverstärker können den Motor bei Netzausfall bis zum Stillstand bremsen.

Wenn der Motor mit einer Haltebremse ausgestattet ist, darf dessen Welle keinen axialen Belastungen ausgesetzt sein.

Besonderheiten der Motoren

Motoren BPH 055

- Isolationsklasse der Wicklungen F (155°) nach Norm VDE 0530.
- Messsystem: Resolver mit nur einem Polpaar (Messsystem U).
- · Leistungs- und Steueranschluss über zwei Spezialstecker IP65.
- Benötigt eine Resolverschnittstelle MDLQ1CR04 für den zugehörigen Antriebsverstärker (MDLA oder MNDA).
- Schutzart am Wellenabgang: IP 54 standard, IP 64 mit der Dichtung Best .-Nr. BMHQ101. Diese Dichtung ist mit einem Schmieröl in Kontakt.
- · Nicht lieferbar in der Ausführung BPG.
- · Haltebremse in Option.

Motoren BPH/BPG 075 bis 190

- · Schutzart am Wellenabgang: IP 65 standard.
- Option IP 67/67.

Dies gewährleistet eine Schutzart IP67 sowohl für das Gehäuse als auch am Wellenabgang, wobei die Wellendichtung mit Schmieröl in Kontakt steht.

Beispiel: Montage des Motors auf ein Getriebe; dann wird die Wellendichtung durch den Kontakt mit dem Öl des Getriebes geschmiert.

Lebensdauer der Dichtung bei diesen Betriebsbedingungen: 5000 Stunden.

Die Option IP67/67 ist nur mit dem Leistungsausgang auf Stecker (5) möglich.

Alle Motoren IP67 sind für "Überdruck" vorbereitet (Eingang zum Einführen von Druckluft). Bei Bedarf bitte anfragen.

- Messsystemausgang auf Stecker.
- · Leistungsanschluss über Klemmenkasten oder auf Stecker.
- Die Steckerabgänge sind durch den Kunden in 90 Grad Schritten orientierbar.
- Beständigkeit gegen Kühlschmierstoff (nur Motoren IP 67/67).

Die Schutzart IP 67/67 sowie die Lackierung des Gehäuses sind so ausgelegt, daß sie gegen bestimmte Kühlschmierstoffe beständig sind: Shellcut HB (unverdünnt), Quaker 2793 (auf 10% verdünnt), Ionorex 500 plus (unverdünnt).

Für die Beständigkeit gegen weitere Kühlschmierstoffe (IP 67/67 und Resistenz der Lackierung), wenden Sie sich bitte an NUM zur Durchführung von Tests und zur eventuellen Herstellung eines Motors in Spezialausführung.

- Option Haltebremse: nur für die Motoren BPH.
- Für die Motoren BPH/BPG mit Gebervorbereitung «T» existiert ein Adapter und eine Kupplungsdichtung (siehe Seiten 5/11-5/12).

Die Stecker der Motoren BPH 075 bis 190 sind nicht mit denen der Motoren BMH austauschbar.

Motoren BPG

Eine Auswahl der Motoren BPH existiert in der Ausführung BPG:

- · Hohe Steifigkeit des Rotors
- Hohe Massenträgheit des Rotors
- · Keine Haltebremse möglich.

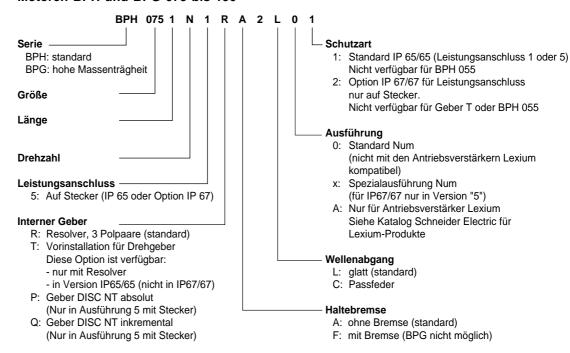
- Die Stecker der Motoren BPG sind nicht mit denen der Motoren BMG austauschbar.
- Die Wellenmasse der Motoren BPH und BPG ist unterschiedlich.

Motoren BML

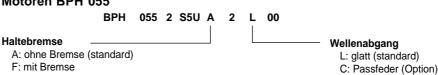
- Geringe Abmessungen
- · Keine Haltebremse möglich
- Messsystem: Resolver mit drei Polpaaren (Geber R) und ein Polpaar in Option (Geber "U")
- Schutzart der Welle: IP 54 (Gehäuse IP65).
- Die Anschlüsse für Leistungsteil und Geber sind auf radiale Ausgänge (IP65) gelegt.

Servomotoren BPH, BPG, BML und BHL

Motoren BHL


- Geringe Abmessungen bei hohem Drehmoment.
- Geeignet für große Maschinen (Applikationen, die ein hohes Nenndrehmoment und ein hohes Höchstdrehmoment erfordern).
- Mögliche Verwendung mit den Achsantriebsverstärkern MDLA und MDLU und dem Spindelantriebsverstärker MBLD.
- Schutzart.

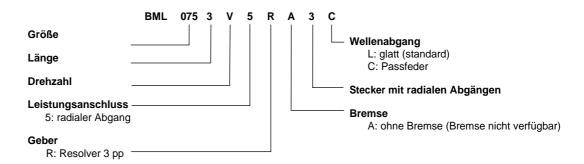
Motor BHL	Gehäuse	Welle
Ohne Lüftung	IP65	IP54
Mit Zwangslüftung	IP54	IP54

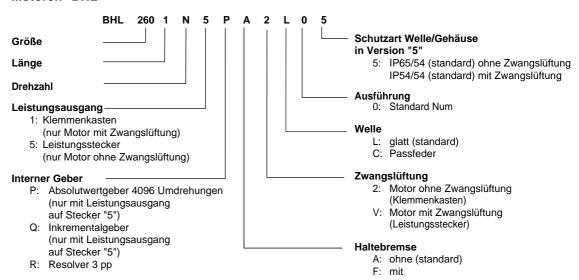

- Geber: Resolver mit 3 Polpaaren "R" oder Geber "P", "Q".
- · Bremse und Passfeder in Option.
- · Leistungsausgang:
 - auf Klemmenkasten (nur bei Motor mit Zwangslüftung)
 - auf Stecker (nur bei Motor ohne Zwangslüftung)
- Wenn der Antriebsverstärker über ein 460 V-Netz versorgt wird, ist ein Spartransformator Best.-Nr.
 AMOTRF001 für den Ventilator des Motors zu verwenden (man kann 2 Ventilatoren mit dem gleichen Spartransformator versorgen)

Identifizierung der Motoren BPH und BPG

Motoren BPH und BPG 075 bis 190

Motoren BPH 055




Servomotoren BPH, BPG, BML und BHL

Identifizierung der Motoren BML und BHL

Motoren BML

Motoren BHL

Servomotoren BPH, BPG, BML und BHL

Detaillierte Daten

		Nenn-	Nenn-			BF	H			ВІ	PG	Ther-	Perma-
		moment	drehzahl	T-2 -114	T. 2 . l 24	0		D		Takkala ak	0	mische	nenter
		im Stillstand		Motor-	Trägheit Rotor	Gewich	nt Motor	Bren	nse	Trägheit Rotor	Gewicht Motor	Zeit- kons-	Wirk- strom
		(100 K)		ohne	mit	ohne	mit	Moment	Strom	ohne	ohne	tante	im Still-
				Bremse	Bremse	Bremse	Bremse			Bremse	Bremse		stand
	Motor	Cn (1)	wn									T th	In
Nr.	BPH BPG	(Nm)	(min-1)	(g.m2)	(g.m2)	(kg)	(kg)	(Nm)	(A)	(g.m2)	(kg)	(mn)	(A eff)
1	055 2S	0,4	8000	0,024	0,025	1,4	1,65	1	0,33			20	1,07
2	075 1N	1,3	3000	0,08	0,12	3,5	3,85	2,5	0,5	0,254	4		2,2
3	1V		6 000										3
4	ŽN	2,3	3000	0,12	0,16	4,3	4,65			0,304	4,8	23	2,7
5	2V		6000										3,5
6	4N	4	3000	0,21	0,25	6	6,35	5				26	3,5
7	095 2N	4,3	3000	0,3	0,41	6,7	7,5		0,7	0,86	7,6		3,5
8	2V		6000	0.44	0.50		0.0	1		0.07	0.0	00	5,9
9	3N	6	3000	0,41	0,52	8	8,8			0,97	8,9	29	5,2
10	3V	0.0	6000	0.04	0.75	40.5	44.0	44				20	10,3
11	5N	9,2	3000	0,64	0,75	10,5	11,3	11	0.0	0.45	44.0	33	5,8
12	115 2N	7,4	3000	0,7	1,07	9,6	10,9	12	0,8	2,45	11,2	29	5,5
13	2V 3K	40.5	6000	0.07	4.04	44.7	40	1				20	10,5
14		10,5	2000	0,97	1,34	11,7	13			0.70	40.0	33	5,3
15	3N		3000							2,73	13,3		9,2
16	3V	10.0	6000	4.05	1.00	42.0	15.1	1				26	12,6
17	4K	13,3	2000	1,25	1,62	13,8	15,1					36	6,2
18	4N		3000										10,1
19	4V	40.7	6000	4.0	0.47	47.0	40.0	00				- 44	17,6
20	6N	18,7	3000	1,8	2,17	17,9	19,2	22		1		41	12
21	142 2K	12	2000	1,59	2,54	17,2	19,4	20	1	0.7	00.4	30	6
22 23	2N 2R		3 000 4 250							6,7	20,4		10,4
	2K 3K	17		2.40	244	20,1	22.2	1				34	11,5 9,5
24 25		17	2000	2,19	3,14	20,1	22,3			70	23,3	34	
26	3N 3R		3000							7,3	23,3		11,7
27	4K	22	4250 2000	2,79	3,74	23	25,2	1		7,9	26,2	37	16,9 10,4
28	4N 4N	22	3000	2,79	3,74	23	25,2			7,9	20,2	31	15,6
29	4R		4250										20,8
30	7N	35	3000	4,29	5,24	31,7	33,9	40		9,7	34,9	42	24,2
31	190 2K	25	2000	5,14	8,25	32,1	36,2	40	1,5	20,9	38,1	38	16,6
32	2N	23	3000	3,14	0,23	32,1	30,2		1,5	20,9	30,1	30	19,9
33	2R		4250										29,2
34	3K	36	2000	7,1	10,2	37,3	41,4	-				43	19,7
35	3N	55	3000	','	10,2	07,0	1, 			22,9	43,3	70	27,8
36	4K	46	2000	9,04	12,1	42,4	46,5	1			10,0	48	20,6
37	4N	.5	3000	0,04	'-,'	,-,-	10,0						30,3
38	5H	56	1500	11	14,1	47,6	51,7	80				52	20
39	5L		2500		,.	,0	٠,,,					<u> </u>	31,4
40	7K	75	2000	14,9	18	58	62,1	1				59	27,9
41	AK	100	2000	20,75	23,8	73,9	78	1				74	44
	Motor BHL	1 .00		_=====	1	. 5,0		<u> </u>				· · ·	
1	260 1N*	85	3 000	45	48,1	95	99	80	1,5			63	52
2	1N**	120		.		100	104		.,-			45	73
3	2K*	120	2 000	66,2	69,3	126	130	80	1,5		-	70	52
4	2K**	160			,-	131	135		,-			50	69,3
Nr.	Motor BML			1	I .	I .							1
1	075 1V	1,1	6 000	0,08		3,2						20	2,8
2	3N	2,8	3 000	0,15		4,6						25	4
3	3V		6 000										5,8
* Mot	l or ohne Zwangs	düftung	**	Motor mi	t Zwangs	düftuna				I Motor nic	ht verfüg	har	1

^{*} Motor ohne Zwangslüftung

Motor nicht verfügbar

Nennwirkstrom: pro Phase erforderlicher Wirkstrom für das Nenndrehmoment im Stillstand.

^{**} Motor mit Zwangslüftung

⁽¹⁾ Die Werte für Drehmoment und Strom gelten für eine Erwärmung des Gehäuses von 100 K.

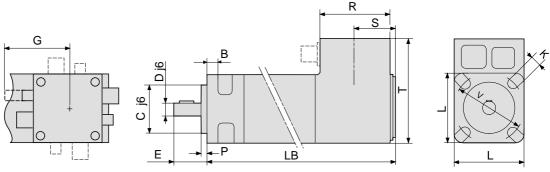
Bei einer Erwärmung des Gehäuses von maximal 60 K sind diese Werte mit 0,77 zu multiplizieren.

Werte für Drehmoment: theoretische Toleranz: ± 10 %, typische Toleranz: ± 5 %.

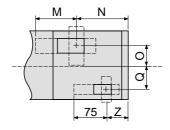
Wenn der Motor auf einem thermisch isolierenden Träger montiert ist, sind diese Werte für Drehmoment um weitere 10% zu reduzieren. Nenndrehmoment im Stillstand: maximal verfügbares permanentes Drehmoment auf der Motorwelle bei Nulldrehzahl.

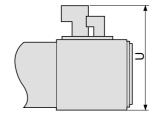
Servomotoren BPH, BPG, BML und BHL

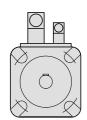
Abmessungen


Motoren BPH und BPG 075 bis 190

Motor BPH			Klemmen- kasten "1"				n-	Stek ker "5"	er Welle BPH					Welle BPG												
BPG		L	LB	С	Р	В	V	K	R	s	Т	U	D	Е	Н	F	GA	J	d	D	Е	Н	F	GA	J	d
075	1	75	221	60	2,5	8	75	6	82	55	116	117	11	23	15	4	12,5	5	M4x10	14	30	20	5	16	5	M5x12
	2		250										14	30	20	5	16		M5x12,5							
	4		308																							
095	2	95	275	80	3	9	100	7	82	51	134	137	19	40	30	6	21,5		M6x10	19	40	30	6	21,5	5	M6x16
	3		304																M6x16							
	5		362																							
115	2	115	290	95	3	10	115	9	111	53	157	166	19	40	30	6	21,5		M6x16	24	50	40	8	27	5	M8x19
	3		319																							
	4		348										24	50	40	8	27		M8x19							
	6		406																							
142	2	142	316	130	3	14	165	11	111	60	194	193	24	50	40	8	27		M8x19	32	58	45	10	35	5	M12x28
	3		345																							
	4		374																							
	7		461										32	58	45	10	35		M12x28							
190	2	190	355	180	3	17	215	14	111	60	244	242	32	58	45	10	35	6,5	M12x28	38	80	70	10	41	6,5	M12x28
	3		384									(1)														
	4		413									oder														
	5		442									253														
	7		500									(2)	38	80	70	10	41									
	Α		605																							

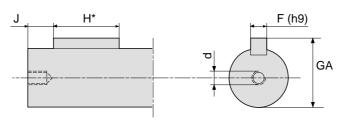

(1) 190 2K, 2N, 3K, 4K, 5H (2) 190 2R, 3N, 4N, 5L, 7K, AK


Existiert nicht in BPG


Leistungsanschluss auf Klemmenkasten "1"

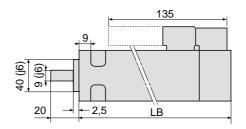
Leistungsanschluss auf Stecker "5"

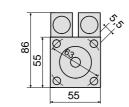
Abmessungen der an den Motoren befestigten drehbaren Stecker

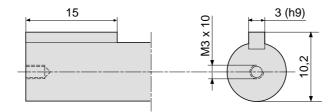

BPH/B	3PG	G	M	N	0	Q	Z
075		110	94	71	16	16	39
095		110	94	67			35
115		123	102	68			36
142		123	102	77			44
BPH	2K	123	102	80	20	20	41
190	2N		102	80			41
	2R		160	81			38
	3K		102	80			41
	3N		160	81			38

		G	M	N	0	Q	Z
BPH	4K	123	102	80	20	20	41
190	4N		160	81			38
	5H		102	80			41
	5L		160	81			38
	7K		160	81			38
	AK		160	81			38
BPG	2K	123	102	80	20	20	41
190	3N		160	81	21	22	38

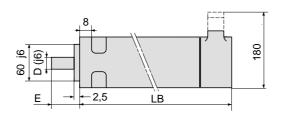
Servomotoren BPH, BPG, BML und BHL

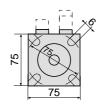

Abmessungen

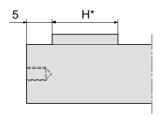

Wellenabgang von BPH und BPG 075 bis 190

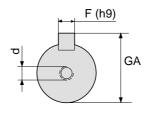

^{*} Passfeder: Abmessungen und Toleranzen nach CEI 72-1.

Motor BPH 055

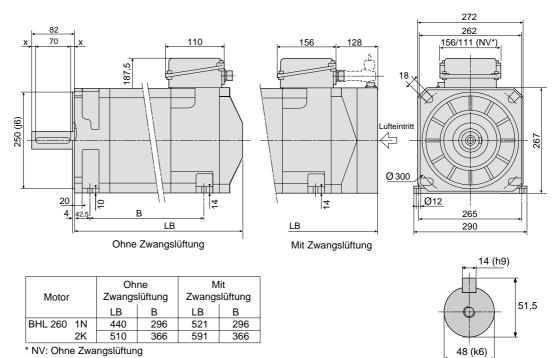

Motor	
BPH 055 2	LB
ohne Bremse	140
mit Bremse	176




Servomotoren BPH, BPG, BML und BHL


Abmessungen

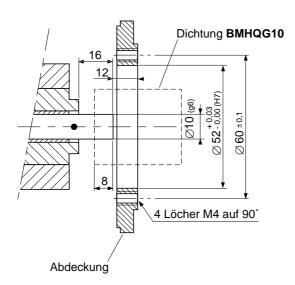
Motoren BML



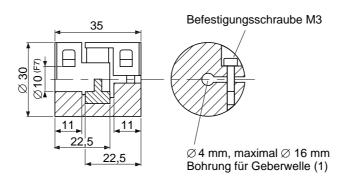
					Welle		
Motoren	LB	D	E	Н	F	GA	d
BML 0751	156	11	23	15	4	12,5	M4x10
BML 075 3	214	14	30	20	5	16	M5x12,5

Motoren BHL

Servomotoren BPH, BPG 075 bis 190 Gebervorbereitung


Kupplungsdichtung

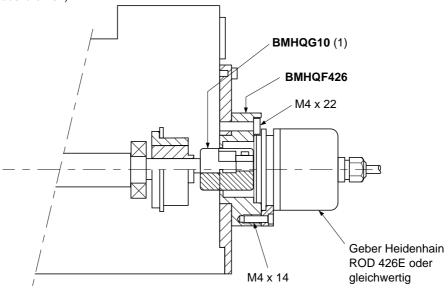
Wenn der Motor mit einem externen Geber ausgerüstet werden soll, muss er mit der Gebervorbereitung "T" bestellt werden (Die Option"T" ist nur bei den Motoren BPH und BPG erhältlich, die mit Resolvern mit 3 Polpaaren ausgerüstet sind, und in Ausführung IP65/65).


Die Gebervorbereitung "T" erleichtert die eventuelle Montage eines Gebers, da das Motorenteil bereits dafür vorbereitet ist:

- die hintere Abdeckung des Motors ist vorgefräst und vorgebohrt,
- die 4 Befestigungslöcher sind vorgebohrt,
- die Bohrung ist durch eine aufgeschraubte Metallplatte verschlossen.

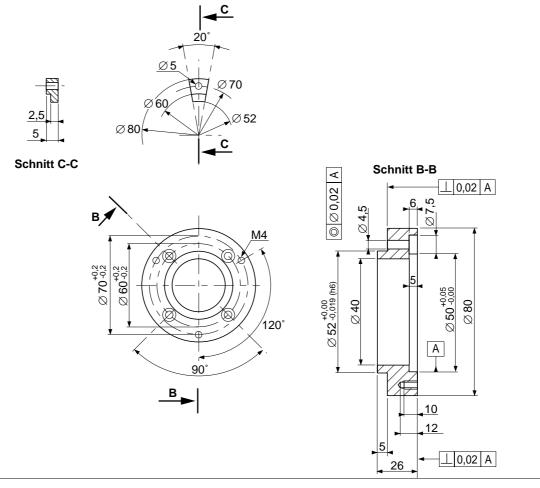
Es kann auch die Kupplung geliefert werden (Best.-Nr.: BMHQG10).

Kupplung BMHQG10



(1) Die Bohrung, Ø 4 mm, muss entsprechend der Geberwelle aufgebohrt werden (vom Kunden auszuführen).

Servomotoren BPH, BPG 075 bis 190 Gebervorbereitung


Kupplung für Geber ROD 426 oder gleichwertig

Die Bohrung für die Geberwelle auf der Kupplung (Best.-Nr. **BMHQG10**) muss angepasst werden (vom Kunden auszuführen).

Kupplungsteil für Geber Typ ROD 426 oder gleichwertig.

Das Kupplungsteil Best.-Nr. BMHQF426 ist für alle Motoren BPH/BPG 075 bis 190 gleich.

Moteurs NUM DRIVE

Spindelmotoren AMS-IM

Kenndaten

Allgemeines - Anwendungsbereiche

Die asynchronen Motoren AMS und IM sind für den Antrieb von Spindeln auf Werkzeugmaschinen bestimmt.

Dank ihrer kompakten Bauweise (integrierte, axiale Lüftung) besitzen sie eine geringe Massenträgheit des Rotors.

Die optionale Funktion als C-Achse ist durch einen hochauflösenden Geber gewährleistet.

Die Leistungen dieser Motoren liegen zwischen 2,2 kW und 55 kW. Ein grosser Drehzahlbereich mit konstanter Leistung ermöglicht die Vereinfachung oder sogar das Wegfallen des Getriebes.

Die zugehörigen Antriebsverstärker mit vektorieller Flussregelung gewährleisten eine ausgezeichnete Drehqualität auch bei niedriger Drehzahl.

Kenndaten Leistung-Drehzahl

Siehe Zuordnungstabellen Motoren-Antriebsverstärker (Kapitel 7).

Allgemeine Daten AMS-IM 18M

- Allgemeine Daten nach CEI 34-1.
- Schutzart des Gehäuses IP65 nach CEI 529 (außer dem Ventilator: IP54).
- Schutzart am Wellenabgang: IP 54 standard IP 65 in Option nach CEI 529.
- Geberanschluss über Stecker.
- · Thermischer Schutz durch Thermokontakt
- Isolationsklasse der Wicklungen: H (180 °C) nach VDE 0530.
- Exzentrizität, Konzentrizität und Rechtwinkligkeit zwischen Flansch und Welle nach DIN 42955 R.
- Befestigung: durch Flansch mit Glattlöchern nach CEI 72-2 oder mit Haltern.
- Wellenabgang und Passfeder nach CEI 72-1.
- Zulässige Montagepositionen: IMB3 IMB5 IMV1 IMV3 nach DIN 42950.
- Auswuchtung nach ISO 2373: Klasse R standard, Klasse S in Option.
- Betriebstemperatur: 0 bis 40 °C.
- Änderung der Ansteuerung bei bestimmten Motoren, um den Drehzahlbereich mit konstanter Leistung noch zu erweitern.
- Lackierung auf Polyesterharzbasis; Farbe: blau RAL 5009.

Besonderheiten der Motoren

Motoren AMS

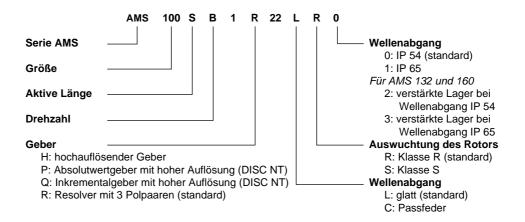
- Bei einigen Motoren AMS 160 kann die elektrische Kopplung geändert werden.
- Der interne Ventilator wird durch einen separaten Anschluss versorgt (Schutzgrad des Ventilators: IP 54).
- Die Leistungsanschlüsse erfolgen über Klemmenkasten, die jeweils um 90° gedreht werden können.
- Wenn der Antriebsverstärker über ein 460 V-Netz versorgt wird, ist ein Spartransformator Best.-Nr. AMOTRF001 für den Ventilator des Motors zu verwenden (man kann 2 Ventilatoren mit dem gleichen Spartransformator versorgen).

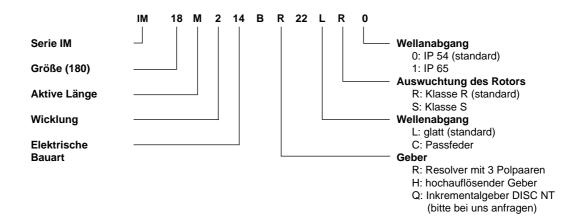
Motoren IM

- Bei einigen Motoren IM 18M kann die Ansteuerung geändert werden.
- Die Leistungsanschlüsse erfolgen über drei Stecker.

Geräuschpegel

Mittlerer Geräuschpegel.


AMS 100: 70 dB [A] +/- 3 db (A) AMS 132: 72 dB [A] +/- 3 db (A) AMS 160: 78 dB [A] +/- 3 db (A) IM 18M : 75 dB [A] +/- 3 db (A)



Spindelmotoren AMS-IM

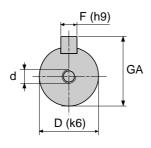
Kenndaten

Identifizierung der Motoren

Detaillierte Daten

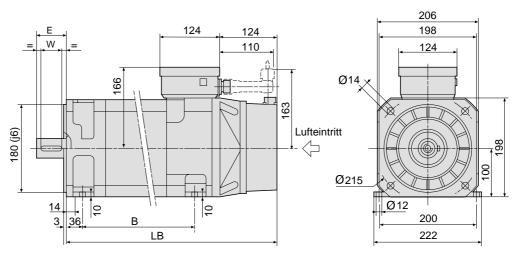
Motor	Leistung S1 (kW)	Gewicht (kg)	Trägheit des Rotors (kg.m²)	Thermische Konstante (mn)	Drehst ventilat (V)	
AMS 100 S	3,7	37	0,009	32		
AMS 100 M	5,5	49	0,014	35		0,11
AMS 100 G	9	71	0,023	38		
AMS 132 S	15	105	0,055	45	400**	
AMS 132 M	19,5	131	0,075	50		0,2
AMS 132 L	22	183	0,113	55		
AMS 160 M	36	215	0,25	57		0,3
AMS 160 L	36	290	0,37	61		
IM 18M	55	415	0,57	63	220 *	0,78

^{*} Einphasen-Ventilator.

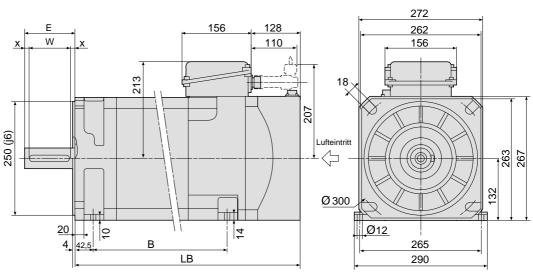

^{**} Bei einem Dreiphasennetz von 460 V ist ein Spartransformator 480/400 V - 60 Hz - 250 VA (Best.-Nr.: AMOTRF001) vorzusehen.

Spindelmotoren AMS-IM

Abmessungen

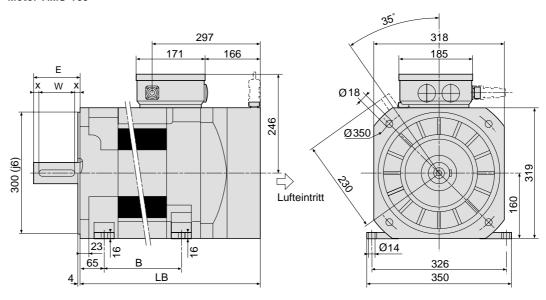

Motoren AMS

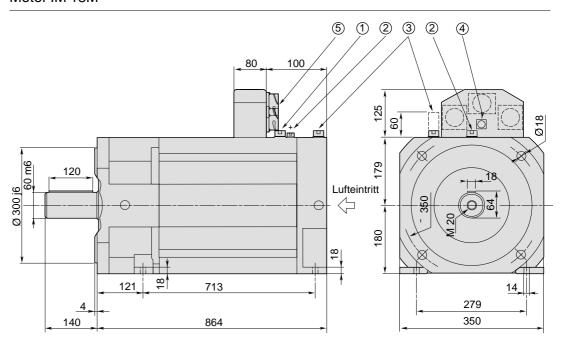
Wellenabgang der Motoren AMS



Moto	r					W	elle		
AMS		LB	В	D	E	W	F	GA	d
100	S	388	179	32	60	50	10	35	M12x30
	M	442	233						
	G	535	326	38	80	70		41	
132	S	521	296	42	110	90	12	45	M16x36
	M	591	366						
	L	721	496	48	110	90	14	51,5	
160	М	682	385	55	110	90	16	59	M20x42
	L	827	530						

Motor AMS 100


Motor AMS 132


Spindelmotoren AMS-IM

Abmessungen

Motor AMS 160

Motor IM 18M

1 : Geberstecker

② : Erdanschluss

③ : Ventilatorstecker

4 : Stecker des Thermopaars

⑤ : Leistungsstecker (Nr. 3)

Spindelmotoren AMR250

Allgemeines

Der Spindelmotor AMR 250 besitzt ein kombiniertes Kühlsystem Flüssigkeit/Luft.

Er eignet sich besonders für Spindeln von Werkzeugmaschinen:

- minimale Erwärmung des Motors und der zugehörigen Mechanik,
- · kompakte Bauweise,
- · hohe Lebensdauer aufgrund der geringen Erwärmung.

Kenndaten Leistung-Drehzahl

Siehe die Zuordungstabellen für Motoren und Antriebsverstärker (Kapitel 7).

Allgemeine Kenndaten

Allgemeine elektrische Daten
Isolierung der Wicklungen
Schutzart des Motors
Schutzart der Welle
Auswuchtung des Rotors
Betriebstemperatur

CEI 34-1

Klasse H (180°)

F 1P 55

Schutzart der Welle
F 1P 54 (CEI 529)

Schutzart der Welle
F 2373

Schutzart der Welle
F 34 (CEI 529)

Schu

Anschlüsse : 1 Anschluss für den Geber und 3 Anschlüsse für die Leistungsversorgung.

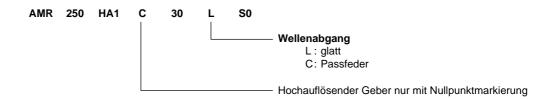
Gewicht : 310 kg Rotorträgheit : 0,22 kg.m²

Geber : mit hoher Auflösung für den Betrieb als C-Achse (Geber des Typs V und

C, siehe Seite 5/20)

Nennleistung Pn : $30 \text{ kW} - \text{von 843 bis 6300 min}^{-1}$; ω max. 10000 min^{-1} Sternschaltung Y : konstante Leistung von 843 bis 2300 min}^{-1} Dreieckschaltung Δ : konstante Leistung von 1900 bis 6300 min}^{-1}

Typ der Kühlflüssigkeit	Durchsatz	Maximaler Unterschied zwischen der Ein- und Ausgangstemperatur des Kühlmediums	Druck
Wasser	6 (l/min)	15 °C	0,5 Bar (1)
Luft	33 (l/s)	50 °C	5 Bar (2)

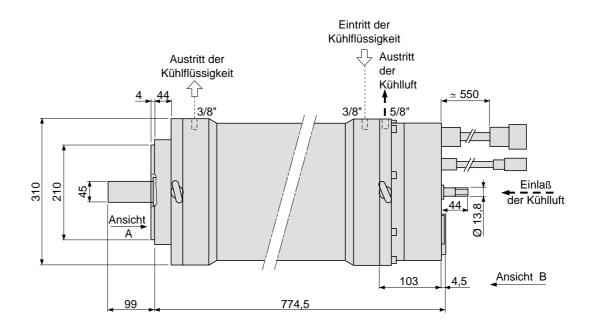

⁽¹⁾ Wassertemperatur am Eingang: 20 °C

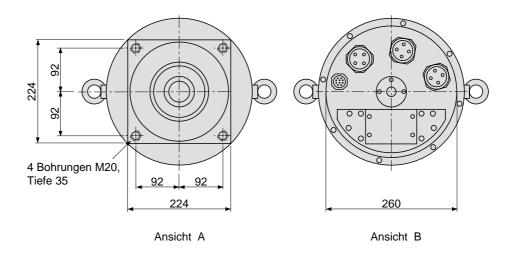
Das Ändern der Anschaltung kann dynamisch oder bei einer Drehzahl unter 2100 min⁻¹ erfolgen Wenn ein Antriebsverstärker UAC verwendet wird, muss dieser unbedingt mit einer Relaiskarte (G14 oder G15) ausgerüstet werden.

Anmerkung:

- Die Übertragung der Bewegung durch Keilriemen ist aufgrund der hohen Belastung der Lager bei hoher Drehzahl nicht möglich.
- Der Motor wird über das vordere Flanschlager befestigt; er kann ebenfalls über das hintere Flanschlager befestigt werden.

Identifizierung des Motors





⁽²⁾ Eintritt der getrockneten und auf 30 Mikron gefilterten Luft.

Spindelmotoren AMS250

Abmessungen

Motoren Motorspindle® (MSA-MSS)

Kenndaten

Allgemeines - Anwendungsbereich

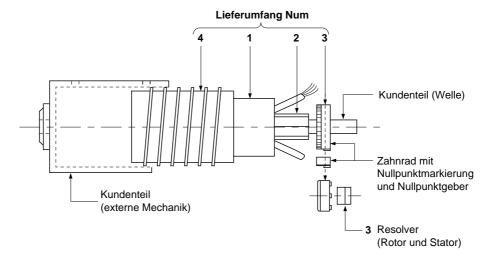
Die Motoren Motorspindle® ermöglichen eine optimale Integration der Spindel in die Maschine, was entscheidende Vorteile bietet:

- äusserst kompakte Abmessungen;
- · wesentlich vereinfachte Antriebskette;
- · minimale Erwärmung durch Flüssigkeitskühlung.

Dadurch ergibt sich eine erhöhte Festigkeit, ein geräuscharmer Betrieb und eine hohe Zuverlässigkeit.

Die Motorspindle existieren in zwei Technologien:

- asynchron (MSA)
- synchron (MSS), mit Kompaktmagneten und besonders geringer Erwärmung.


Die Funktion als C-Achse ist für die Motoren MSA möglich, da diese mit hochauflösenden Drehzahlgebern ausgerüstet sind.

Der Lieferumfang von NUM beschränkt sich auf die aktiven Teile des Motors:

- Stator (1)
- Hohlrotor (2)
- Drehzahlgeber (3)
- eventuell der äussere Kühlmantel (4) (UNI 7729, Fe 51C)

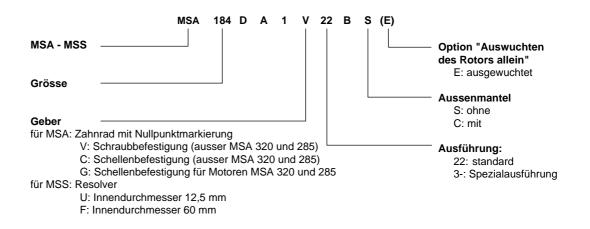
Die Montage dieser Teile erfolgt durch den Hersteller der Spindel.

In einigen Fällen kann es erforderlich sein, die vom Kunden montierte Spindel an Num zu schicken, um präzise deren elektrische Daten und die Parameter des zugehörigen Antriebsverstärkers zu bestimmen.

Allgemeine Daten

- Allgemeine Daten nach CEI 34-1.
- Absicherung durch Thermopaar (Schwellwert: 180°C)
- Isolationsklasse der Wicklungen: H (180°C) nach VDE 0530.
- Auswuchten des Rotors zu Lasten des Kunden nach Montage auf der Welle. Der Rotor kann jedoch auch allein nach der Norm ISO 1940, Klasse G = 2,5 ausgewuchtet werden (Option E).

Anmerkung: Der Abstand zwischen den Ständerwicklungen und dem Gehäuse muss mindestens 5 mm betragen.


Die Leistungs- und Ansteuerungsdaten sind aus der Zuordnungstabelle (Kapitel 7) ersichtlich.

Für den Motor MSS135DB1 muss ein dreiphasiger Filter AGOREA001 in Serie mit dem Stator geschaltet werden.

		Einheit	MSS	MSA						
			135D	184D	184H	220D	240D	240H	285D	320D
Trägheit	des Rotors	m².kg	0,0023	0,013	0,022	0,052	0,067	0,087	0,173	0,41
Gewicht	Rotor + Stator	kg	12	23,5	38	46,5	57	75,5	103	198
	Kühlmantel	kg	5,5	10,5	13	12	13,5	15	25,5	39

Motoren Motorspindle® (MSA-MSS)

Identifizierung der Motoren

Geber

Motoren MSA

Die hochauflösenden Motorgeber ermöglichen die Funktion als C-Achse bei ausgezeichneter Drehqualität.

Die Montage der Zahnräder (V, C, G) auf dem Rotor erfolgt durch Schrauben oder Schrumpfen.

Der zugehörige Kompaktantriebsverstärker (MBLD oder MDLS) ermöglicht die Simulation eines Encoders mit RS422, wobei die Auflösung von der Drehzahl abhängt:

- Geber V, C f
 ür alle Motoren MSA, ausser MSA 320 und 285
 - mindestens: 512 Impulse pro Motorumdrehung (diese Auflösung kann bis zur Höchstdrehzahl verwendet werden)
 - maximal: 65 536 Impulse pro Motorumdrehung (diese Auflösung kann bis maximal 54 min-1 verwendet werden)
- Geber G f
 ür MSA 320 und 285
 - mindestens: 1 024 Impulse pro Motorumdrehung (diese Auflösung kann bis zur Höchstdrehzahl verwendet werden)
 - maximal: 131 072 Impulse pro Motorumdrehung (diese Auflösung kann bis maximal 54 min⁻¹ verwendet werden)

Motoren MSS

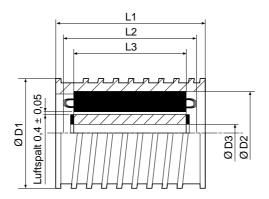
· Geber U, F

Dies sind Resolver mit 1 Polpaar und einem Innendurchmesser von 12,5 mm oder 60 mm.

Die Encodersimulation liefert 1024 Impulse pro Motorumdrehung bis zur Höchstdrehzahl und bis maximal 16384 Impulse pro Motorumdrehung bis zu maximal 960 min⁻¹.

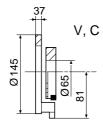
Die Funktion als Pseudo-C-Achse ist möglich, wobei die Leistungen jedoch unter denen mit Zahnrad liegen.

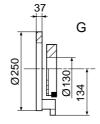
Optionen Spindelindexierung, C-Achse, Gebersimulation

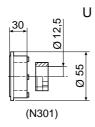

Siehe nachstehende Tabelle.

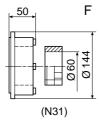
Die Geber der Motoren MSA und MSS besitzen eine Nullpunktmarkierung. Daher braucht man keine zusätzliche Nullpunktmarkierung zu verwenden.

Antriebs- verstärker			Motor MSS (mit Resolver 1pp U, F)		
	Option	Optionale Karte vorsehen	Option	Optionale Karte vorsehen	
UAC	Indexierung	Mit 2UACCAXIS411	Indexierung	Mit 2UACPOS1	
	C-Achse	Mit 2UACHR411	Gebersimulation	Mit 2UACENC387	
MDLS	Indexierung	Basis			
	C-Achse	Mit Option 02			
MBLD	C-Achse	Basis			


Motoren Motorspindle (MSA-MSS)


Abmessungen


Motore	en	L1	L2	L3	D1	D2	D3
MSA	184 DA1	245	239	127	205	184	59
	HA1	338	332	220	1		
	HB1						
_	220 DA1	285	275	170	240	220	72
	DB1						
_	240 DA1	285	275	160	260	240	76
	HA1	340	330	215	Ī		
	HB1						
	HC1						
_	285 DA1	365	355	215	310	285	99
_	320 DA1	510	500	340	345	320	113
MSS	135 DA1	204	194	116	155	135	45
	DB1						


Geber MSA

Geber MSS

Stecker für Motoren

Die Stecker zu den Motoren müssen separat bestellt werden, ausser wenn die Kabel fertig konfektioniert bestellt werden.

Stecker für Servomotoren BPH, BPG, BML und BHL

Servomotoren	Geberstecker und Thermopaar	Geberstecker und Thermopaar			
	Motor mit Resolver mit 3 Polpaaren oder 1 Polpaar (Geber R, U, T)	Motor mit Geber für DISC NT (Geber P, Q)			
BPH/BPG 075 bis 190, BHL	AMOCON003D (Ø 5,5 bis 12)	AMOCON002D (Ø 5,5 bis 12)			
BPH 055	CONN116D00				
BML 075	AMOCON001D				

Servomotoren		Leistungsstecker mit a	abgeschirmten Kabeln entsprecl	nend den CE-Richtlinien
		Version "1" Leistungsanschluss aufKlemmenkasten(1)	•	Ventilatorstecker
BPH/BPG 075/ 09	5	BMHQPRE1	AMOCON004D	
BPH/BPG 115	alle ausser 4 V		(Ø 7,5 bis 18,5)	
	4 V	BMHQPRE2		
BPH/BPG 142	2K, 2N, 2R, 3K, 3N, 4K	BMHQPRE1		
	3R, 4N, 4R, 7N	BMHQPRE2		
BPH/BPG 190	2K, 2N, 3K, 4K, 5H			
	2R, 3N, 4N, 5L, 7K, AK	BMHQPRE3	AMOCON005D (Ø 9 bis 24)	
BPH 055			CONN117D00	
BML 075			CONN118D00	
BHL 260	1N Ohne Zwangslüftung		AMOCON005D (3)(Ø 9 bis 24)	
	1N Mit Zwangslüftung			CONN113D00
	2K Ohne Zwangslüftung		AMOCON005D (3) (Ø 9 bis 24)	
	2K Mit Zwangslüftung			CONN113D00

⁽¹⁾ Kabelschelle IP67 entsprechend den CE-Richtlinien.

Motor nicht verfügbar

Alle Stecker für die Motoren BPG/BPG entsprechen der Schutzart IP67.

Die Zahlen in Klammern stehen für die minimalen und maximalen Durchmesser der Kabel für die Anschlüsse. Beispiel für AMOCON003D: Mindestdurchmesser des Kabels 5,5 mm, maximaler Durchmesser 12 mm.

⁽²⁾ Die dichte Kabelschelle (IP67/CE) wird mit dem Leistungsstecker geliefert

⁽³⁾ Die dichte Kabeschelle (IP67/CE) wird mit dem Motor geliefert.

Stecker für Motoren

Crimpen der Stecker der Servomotoren BPH/BPG 075 bis 190 und BHL

Die Motoren BPH/BPG 075 bis 190 und BHL sind mit Crimpsteckern ausgerüstet. Zum Crimpen werden folgende Teile benötigt:

- Crimpzange,
- Kabelhalter,
- eventuell zusätzliche, elektrische Kontakte (die Motorstecker werden in der Grundausführung mit den elektrischen Kontakten geliefert).

		Stecker	Crimpzange	Kabelhalter	Kontakte
Motoren BF	PH/BPG 075/190 und BHL	Geber (1)		AMOPOS001	AMOCTC001F
BPH/BPG	075/095		AMOPNZ001		
BPH/BPG	Alle außer 4 V				
115	4 V		AMOPNZ002	AMOPOS002	AMOCTC002F
BPH/BPG	2K, 2N, 2R, 3K, 3N, 4K	Leistung	AMOPNZ001		
142	3R, 4N, 4R, 7N	(Phasen und			
BPH/BPG	2K, 2N, 3K, 4K, 5H	Bremse)	AMOPNZ002		
	2R, 3N, 4N, 5L, 7K, AK e für Bremse und nterschiedlich			AMOPOS003 (2) AMOPOS004 (2)	AMOCTC003F (3) AMOCTC004F (3)
Anschlüss	und2KOhneZwangslüftung(4) e für Bremse und nterschiedlich			AMOPOS003 (2) AMOPOS004 (2)	AMOCTC003F (3) AMOCTC004F (3)

- (1) Für Motoren mit Gebern R, U, T, P und Q.
- (2) 003 für die Bremsanschlüsse; 004 für die Anschlüsse Phase + Erde.
- (3) 003F für die Bremsanschlüsse; 004F für die Anschlüsse Phase + Erde.
- (4) Die Kabelschelle wird mit dem Motor geliefert. Die Motoren mit Zwangslüftung besitzen keine Leistungsanschlüsse, sondern nur einen Klemmenkasten.

Stecker für Spindelmotoren AMS

Die Motoren AMS sind nur mit Leistungsanschluss auf Klemmenkasten erhältlich

Motoren			Stecker für Ventilator	Dichte Kabelschelle für abgeschirmtes
	U, R	P, Q		Leistungskabel (CE konform)
AMS 100	CONN108D00	CONN125D00	CONN113D00	BMHQPRE2 (1 pro Motor)
AMS 132				BMHQPRE3 (1 pro Motor)
AMS 160				BMHQPRE3 (2 pro Motor)

Stecker für Spindelmotoren IM

Die Motoren IM sind nur mit Leistungsanschluss auf Stecker erhältlich.

Motor	Geberstecker	Stecker	Stecker	Leistungsstecker	
	H, R, (Q)	Ventilator	Thermopaar	Für abgeschirmte	Für nicht ab-
				Kabel	geschirmte Kabel
IM 18M	CONN109G00	CONN114D00	CONN112D00	CONN122D00	CONN106D00
				(3 pro Motor)	(3 pro motor)

Stecker für Spindelmotoren AM

Die Motoren AMR sind nur mit Leistungsanschluss auf Stecker erhältlich

Motor	Geberstecker und Thermopaar	Leistungsstecker
AMR 250		CONN122D00 (3 pro Motor)

Die in Klammern stehenden Geber sind derzeit nicht erhältlich. Bitte bei uns anfragen.

Kabel

Allgemeines

Die Kabel werden ohne Stecker oder mit Stecker geliefert. Bei Kabel ohne Stecker muss der Stecker separat bestellt werden. Die Geber- und Leistungskabel sind abgeschirmt.

Abgeschirmte Leistungskabel

Für alle Motoren gibt es abgeschirmte Leistungskabel, deren Verwendung von NUM empfohlen wird, um die EMV Richtlinie einzuhalten.

Bei Motoren mit Klemmenkasten muss eine Kabelschelle **BMHQPREx** separat bestellt werden, um die Dichtigkeit am Eingang des Klemmenkastens und die Einhaltung der EG-Empfehlungen zu gewährleisten (siehe Seiten 5/22-5/23).

Kenndaten	Kabel (abgeschirm BestNr. AGOCAV	,	Kabel (abgeschirmt) BestNr. RPCS, AGOCAV001, RSCAWG22x8
Maximal zulässige Länge	75 m		120 m
Zulassung	CE, cUL, UL		IEC 332-1, CE
Betriebstemperatur	0 bis 80°C		0 bis 80°C
Äußere Ummantelung	Polyurethan Polyesi PUR11Y VDE	ter	Polyurethan/PVC
Isolation	Polyolefine (Leistun TPE-E (Bremskabel		Polypropylen (Leistungskabel) Polyester (Geber- oder Bremskabel)
Zugwiderstand	Dynamisch: 20 N/mr	m ² - Statisch: 50 I	N/mm²
Chemische Beständigkeit	VDE 0472 Abschnitt VDE 0282 Abschnitt		VDE 0472-B
Biegefestigkeit gemäßnachstehenden Bedingungen	10 Millionen Zyklen	2 Millionen Zyklen	2 Millionen Zyklen
Krümmungsradius	12 mal Außendurchn	nesser des Kabels	12 mal Außendurchmesser des Kabels
Geschwindigkeit Beschleunigung Farbe	120 m/min 220 m/min 4 m/s² 10 m/s² RAL 5010		120 m/min 4 m/s²
Abschirmung	Kupfer-Zinn (mit übe	er 85% Kupfer)	
Betriebsspannung	600 Veff (Leistungskabel)		450 Veff /750 V Spitze (Leistungskabel) 300 Veff /500 V Spitze (Geberkabel)
Leitungskapazität	< 150 pF/m		< 150 pF/m

Bestellnummer der Kabel entsprechend ihrer Länge

Die Längen, die für jedes Kabel erhältlich sind, sind auf Seite 5/27 angegeben.

Für jedes Kabel muss die Bestellnummer wie folgt ergänzt werden:

• Kabel allein (ohne Stecker): nach der Bestellnummer die Länge angeben

z.B. für ein 15 m langes Kabel

RSCAWG22X8 (15 m) RPC001S (15 m) AGOCAV001 (15 m)

• Kabel komplett (mit Steckern): die Länge in Metern am Ende der Bestellnummer angeben (2 oder 3 Ziffern)

z.B. für ein 15 m langes Kabel

AGOFRU022M**015** AGOFRU008M**015**S AGOFRU008M**015**P BMHQ50M**15**

Kabel für Servomotoren

	Geberkabel (abgeschirmt)					
Motor			Für DISC NT			
	Geber R, U, T		Geber P oder Q			
	Kabel allein	Kabel konkektioniert	Kabel allein	Kabel konfektioniert		
BPH/BPG 075 bis 190	RSCAWG22X8	AGOFRU022M	RPC001S (1)	AGOFRU021M		
BHL		AGOFRU022M	RPC001S (1)	AGOFRU021M		
BPH 055		AGOFRU008MS				
BML 075		AGOFRU007MS				

(1) oder RPC002S Siehe Seite 6/9.

Motor nicht verfügbar

Die konfektionierten Kabel für alle Motoren BPH/BPG 075 bis 190 sind mit Steckern IP 67 bestückt (für Resolver, Geber DISC NT und Leistungsteil).

Kabel

Kabel für zusätzliche Achsmesssysteme

Motor	Motorgeber	Kabel
BPH/BPG 075 bis 190	Geber DISC NT: P oder Q	RPC002S (1)

⁽¹⁾ Siehe seite 6/9.

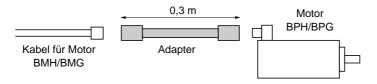
Leistungskabel für Servomotoren

Leistungskabel für Motoren BPH/BPG 075 bis 190 (Phasen UVW + Bremse)

Motoren Bl	PH/BPG/BHL	Leistungskab	el	Ventilatorka	bel
		Kabel allein	Kabel	Kabel allein	Kabel
			konfektioniert		konfektioniert
BPH/BPG	075/095	AGOCAV004	AGOFRU018M		
BPH/BPG	alle ausser 4V				
115	4V	AGOCAV005	AGOFRU019M		
BPH/BPG	2K, 2N, 2R, 3K, 3N, 4K	AGOCAV004	AGOFRU018M		
142	3R, 4N, 4R, 7N	AGOCAV005	AGOFRU019M		
BPH/BPG	2K, 2N, 3K, 4K, 5H				
190	2R, 3N, 4N, 5L, 7K, AK	AGOCAV006	AGOFRU020M		
BHL 260	1N Ohne Zwangslüftung	AGOCAV006	AGOFRU020M		
	1N Mit Zwangslüftung	RPC445S		AGOCAV001	AGOFRU012M010V
	2K Ohne Zwangslüftung	AGOCAV006	AGOFRU020M		
	2K Mit Zwangslüftung	RPC445S		AGOCAV001	AGOFRU012M010V

Motor nicht verfügbar

Die konfektionierten Kabel für alle Motoren BPH/BPG sind mit Steckern IP 67 ausgerüstet (für Resolver, Geber DISC NT und Leistungsteil).


Leistungskabel für Motoren BPH 055 und BML 075 (Phasen UVW)

Motoren	Abgeschirmte Leistungskabel		
	Kabel allein	Kabel konfektioniert	
BPH 055	RPC305S	AGOFRU001MP	
BML 075		AGOFRU002MP	

Adapterkabel für die Motoren BPH/BPG 075 bis 190

Die Anschluss-Stecker (Geber und Leistungsteil) der Motoren BPH/BPG 075 bis 190 sind unterschieldich zu den Steckern der entsprechenden Motoren BMH/BMG. Es sind Adapterkabel vorgesehen, um einen Motor BMH/BMG durch einen Motor BPH/BPG austauschen zu können.

Diese Kabel sind 0,3 m lang und besitzen an einem Ende eine Steckdose Typ BMH/BMG und am anderen Ende einen Stecker Typ BPH/BPG.

Adapter für Geberkabel				
Alle Motoren BPH/BPG 075 bis 190 (1)				
DISC NT (Geber P, Q)	AMOADA001			
Resolver (Geber R, U, T)	ΑΜΟΑΠΑ002			
Reserver (Septer IX, S, 1)	AMOADAGG			

Adapter für Leistungskabel				
Motoren (2)			
BPH/BPG	075/095		AMOADA003	
	115/142		AMOADA004	
	190	2K, 2N, 3K, 4K, 5H	AMOADA005	
	190	2R, 3N, 4N, 5L, 7K, AK	AMOADA006	

Wenn der Motor

- einen Klemmenkasten besitzt (1), ist kein Leistungsadapter erforderlich, nur ein Geberadapter.
- Leistungsanschlüsse besitzt (5), braucht man zwei Adapter (Geber und Leistung).

Motoren NUM DRIVE

Kabel

Kabel für Spindelmotoren AMS-IM

	Geberkabel (abgeschirmt)					
Motor	Für Resolver U, R		Für hochauflösenden Geber DISC NT P, Q			
	Kabel allein Kabel konfektioniert		Kabel allein Kabel konfektion			
AMS	RSCAWG22X8	AGOFRU009MS	RPC001S (1)	AGOFRU010MS		
IM 18M		AGOFRU006MS	-			

(1) siehe Seite 6/9.

		Antriebs- verstärker MDLS/MBLD	Leistungskabel Abgeschirmt		Nicht abgeschirmt	abgeschirmt		
			Kabel allein	Kabel konfektioniert	Kabel allein	Kabel konfektioniert		
AMS100S/G/M		Alle Grössen	RPC455S	Klemmenkasten				
	132 S/M/L	50-75-100	AGOCAV006	(kein konfek- tioniertes Kabel)				
	M/L	150	RPC445S	uomeneo rabelj				
160*		100	AGOCAV006	-				
		150-200	RPC445S					
IM	18M**	MDLS MBLD UAC	RPC435S	AGOFRU005MP	RPC435	5FM40M		

Für die minimalen und maximalen Längen der einzelnen Kabel siehe Seite 5/27.

Nicht verfügbar

Ventilatorkabel für Spindelmotor AMS

Dieses nicht abgeschirmte Kabel kann allein oder mit dem Stecker für den Ventilator geliefert werden.

Motor	Kabel allein	Kabel konfektioniert
AMS	AGOCAV001	AGOFRU012M 010 V (1)

(1) Andere Längen als 10 m bitte bei uns anfragen.

Für die minimalen und maximalen Längen der einzelnen Kabel siehe Seite 5/27.

Kabel für Spindelmotor AMR

Motor	Geberkabel	Leistungskabel
AMR 250	RPC 001S	RPC 435S (3 pro Motor)

Für die minimalen und maximalen Längen der einzelnen Kabel siehe Seite 5/27.

Die in Klammern stehenden Geber sind derzeit nicht erhältlich. Bitte bei uns anfragen.

^{*} Für jeden Motor AMS 160 müssen 2 Leistungskabel bestellt werden (2 parallele Kabel).

^{**}Für jeden Motor IM18M müssen 3 Leistungskabel bestellt werden (3 Leistungsstecker).

Motoren NUM DRIVE

Kabel

Abmessungen und Zusammenstellung der Motorenkabel

Bestellnummern der Kabel	Unbe- stückt oder Konfek- tioniert*	Durch- messer (mm)	Mindestlänge (m)	Zusammensetzung und Querschnitt der Leiter
AGOCAV001	Unbe-	8,2	Minimum : 1 m	(3 + T) x 1 mm ²
AGOCAV004	stückt	12,5		(3 + T) x 1,5 mm ² + 2 x 1 mm ²
AGOCAV005		15,5		(3 + T) x 4 mm ² + 2 x 1 mm ²
AGOCAV006		22,1		(3 + T) x 10 mm ² + 2 x 1 mm ²
AGOFRU001M P	Konfek-	11,2	005, 008, 010, 012, 015,	Dito RPC305S
AGOFRU002M P	tioniert*		020, 025, 030, 040, 050, 075, 100	
AGOFRU005M P		24,8	005, 008, 010, 012, 015, 020, 025, 030, 040, 050, 070	Dito RPC435S
AGOFRU006M S		11,5	005, 008, 010, 012, 015,	Dito RSCAWG22X8
AGOFRU007M S			020, 025, 030, 040, 050,	
AGOFRU008M S			075, 100, 120	
AGOFRU009M S				
AGOFRU010M S		11,8	005, 008, 010, 012, 015, 020, 025, 030, 040	Dito RPC001S
AGOFRU012M010V		8,2	010	Dito AGOCAV001
AGOFRU018M		13	005, 010, 015, 025, 050, 075	Dito AGOCAV004
AGOFRU019M		16,2	005, 010, 015, 025, 035, 050, 075	Dito AGOCAV005
AGOFRU020M		23	005, 010, 015, 025, 050, 075	Dito AGOCAV006
AGOFRU021M		11,8	005, 010, 015, 025, 035, 050, 075	Dito RPC001S
AGOFRU022M		12	005, 010, 012, 015, 025, 050, 075	Dito RSCAWG22X8
AMOADA001	An beiden	12	0,3	Dito RPC001S
AMOADA002	Enden	12		Dito RSCAWG22X8
AMOADA003	konfek- tioniert	11		Dito RPC305S
AMOADA004	aornert	14,4		Dito AGOCAV005 (z.B.: RPC 315S)
AMOADA005				
AMOADA006		21,8		Dito AGOCAV006 (z.B.: RPC 325S)
RPC001S	Unbe- stückt	12	Minimum: 1 m	Verdrillte Kabelpaare + allgemeine Abschirmung
RPC002S		12		(2 p. 0,5 mm² + 4 p. 0,25 mm²) Verdrillte Kabelpaare + allgemeine Abschirmung (2 p. 0,5 mm² + 5 p. 0,25 mm²)
RPC305S	1	11	1	(3 + T) x 1,5 mm ² + 2 x 1 mm ²
RPC435		25	1	(3 + T) x 21,5 mm ²
RPC435S		25	1	
RPC445S		25	1	(3 + T) x 21,5 mm ² + 2 x 1 mm ²
RPC455S		16,2	1	(3 + T) x 6 mm ² + 2 x 1 mm ²
RSCAWG22X8		11,5		4 verdrillte Kabelpaare 0,3 mm²
5FM40M	Konfek- tioniert*	25	005, 010, 015, 020, 025	(3 + T) x 21 mm ²

^{*} Konfektioniert: mit Motorstecker ausgerüstet

Inhaltsverzeichnis

Modulare Antriebsverstärker MDLU und MDLA	Seite
Einleitung Identifizierung der Antriebsverstärker- und Stromversorgungmodule Antriebsverstärkermodule Leistungsversorgungen Zusammenfassende Tabelle der verschiedenen, möglichen Typen von Stromversorgungen	6/3 6/3 6/4
für die modularen Antriebsverstärker	6/5
Externer Bremswiderstand (siehe auch Seite 6/13)	6/6
Funktionen der Antriebsverstärkermodule MDLA	6/6
Funktionen der Antriebsverstärkermodule MDLU	6/7
Kompatibilität MDLU2/Motoren/Stromnetze	6/8
Besonderheiten der Module MDLU - Stecker und Adapter	6/9
Zubehör für die Konfiguration unterschiedlicher Antriebsverstärker Zubehör (EMV-Filter und Metallgehäuse für Stecker)	6/10 6/11
Betriebsmittel	6/11
Installationshandbücher	6/12
Prüfung des Antriebspaketes	6/12
Abmessungen – Antriebsverstärker MDLA/MDLU und Bremswiderstand (siehe auch Seite 6/5)	6/13
Monoblockantriebsverstärker MBLD und MDLS	
Einleitung	6/14
Identifizierung der Antriebsverstärker	6/14
Technische Daten	6/14
Richtlinie für die Dimensionierung	6/15
Bremswiderstand (siehe auch Seite 6/22)	6/15
Basisfunktionen und Optionen Kompatibilität MBLD2/Motoren/Stromnetze	6/16 6/18
Netzrückspeisung und EMV-Filter (siehe auch Seite 6/26)	6/19
Zubehör (Metallgehäuse für Stecker)	6/20
Tools und Programmiermodule	6/20
Installationshandbücher	6/20
Gesamtkontrolle	6/20
Abmessungen – Antriebsverstärker MBLD/MDLS und Bremswiderstand	6/21
Monoblockantriebsverstärker MNDA	
Einleitung	6/23
Identifizierung der Antriebsverstärker	6/23
Technische Daten	6/23
Bremswiderstand Pacific lating and Option and	6/23
Basisfunktionen und Optionen Besonderheit	6/24 6/24
Filter gegen elektromagnetische Störungen	6/24
Betriebsmittel	6/24
Installationshandbuch	6/25
Gesamtkontrolle	6/25
Abmessungen	6/25
Zubehör	
EMC Filter - Elektrische Daten (siehe auch Seite 6/19)	6/26
Drosseln AGOREA und AGOIND - Abmessungen	6/27
Filter HPPM 166 - Abmessungen (siehe auch Seite 6/19)	6/27

Warnung

Die Antriebsverstärker Num sind für den Betrieb an Verteilernetzen des Typs ${\bf TN}$ oder ${\bf TT}$ ausgelegt.

Die eventuelle Verwendung eines Transformators ist möglich, wenn die Sekundärseite des Transformators in Sternschaltung ist und der Sternpunkt geerdet ist.

Verteilernetz des Typs IT

Der Betrieb der Antriebsverstärker Num ist an einem Netz des Typs IT nicht möglich. Wenn der Kunde ein derartiges Netz besitzt, muss ein Transformator vorgesehen werden, der den vorstehenden Kenndaten entspricht. Achtung: Bei diesem Verteilernetz ist die Wirksamkeit der EMV-Filter nicht gewährleistet.

Modulare Antriebsverstärker MDLU und MDLA

Einleitung

Die Antriebsverstärker MDLU und MDLA besitzen die gleiche modulare Technologie. Mehrere Module werden von der gleichen Stromversorgung versorgt. Der Anschluss erfolgt direkt am Drehstromnetz 400 VAC bis 460 VAC.

Diese Module können auch über die Monoblockantriebsverstärker MBLD oder MDLS versorgt werden.

Alle modularen Antriebsverstärker werden digital gesteuert. Man unterscheidet zwischen Modulen mit digitalem Sollwert und Modulen mit analogem Sollwert.

Antriebsverstärker MDLU mit digitalem Sollwert DISC NT

Die intelligenten Antriebsverstäker MDLU sind durch eine serielle Schnittstelle mit hoher Übertragungsrate an die CNC-Steuerung gekoppelt und steuern sowohl Achs- als auch Spindelmotoren:

- Servomotoren BPH, BPG, BML und BHL.
 - Die Servomotoren sind mit einem hochauflösenden inkrementellen oder absoluten Messsystem ausgerüstet. Diese werden für Applikationen mit höchster Genauigkeit, Dynamik und Steifigkeit, sowie für einen absoluten Rundlauf auch bei kleinsten Drehzahlen benötigt (siehe Seite 7/3). Für Hilfsachsen und Handlings-Aufgaben können die Servomotoren mit einen Resolver ausgerüstet werden.
- Die Motoren BML 075 sind immer mit einem Resolver ausgerüstet (R: 3 Polpaare, U: 1 Polpaar).
- Spindelmotoren AMS, MSA und MSS mit kleiner Leistung
 Die Antriebsverstärker MDLU können die Motoren AMS, MSA und MSS bis ca. 20 kW steuern.
 Für Motoren mit grösserer Leistung oder für Applikationen, die eine Rückspeisung in das Netz erfordern, sind die Monoblockantriebsverstärker MBLD (mit digitalem Sollwert) oder MDLS (mit analogem Sollwert) zu verwenden.

Antriebsverstärker MDLA mit analogem Sollwert

Die Antriebsverstärker MDLA sind zur Steuerung der Achsen mit einem analogen Sollwertsignal ± 10 V bestimmt.

Identifizierung der Antriebsverstärker- und Stromversorgungsmodule

Antriebs- verstärker	Für	Antriebsverstärkermodul	Leistungsversorgung
MDLU (DISC NT) mit digi- talem Sollwert	Servo- motoren und kleine Spindel- motoren	MDLU 2 021 N 00 N Index 1 00 Standard Grösse Spannung N: 400 bis 460 V	MDLL 2 015 N 00 Index 2 Spannung
MDLA mit analogem Sollwert	Servo- motoren	MDLA 2 021 Q 00 N Index 2 021 Q 00 N 00 Standard 02 Spielausgleich Spannung	Grösse — N: 400 bis 460 V

Die Stromversorgungen **MDLL2 xxx N00** sind mit einem externen Bremswiderstand ausgerüstet: **MDLLQ xxx**. Für einen externen Widerstand, dessen Leistung größer als die im Abschnitt "Bremswiderstand" (Seite 6/5) angegebenen Werte ist, siehe das Inbetriebnahmehandbuch des Antriebsverstärkers.

Die Hilfsversorgung Best.-Nr. **MDLQ2001N00** ermöglicht eine Erhöhung der maximalen Anzahl der zulässigen Module, siehe Abschnitt "Begrenzung der Anzahl der Module" Seite 6/6.

Modulare Antriebsverstärker MDLU und MDLA

Antriebsverstärkermodule

Die Antriebsverstärker besitzen identische Leistungsteile. Die verschiedenen Grössen sind für MDLU und MDLA gemeinsam. Digitale und analoge, modulare Antriebsverstärker können miteinander kombiniert werden (siehe Kapitel 7).

Grösse der Antriebsverstärker	Ein-	T1		T2		Т3	1	⁻ 4	
MDLU und MDLA	heit	007	014	021	034	050	075	100	150
Nennstrom, eff.	Aeff	2	4	7	14	20	35	45	60
Spitzenstrom	Α	7	14	21	34	50	75	100	150
Wärmeabgabe bei Nennleistung	W	20	35	50	150	170	200	400	500
Gewicht	kg	4,6	4,6	4,6	6,9	6,9	9,2	10,5	11
Breite	mm		50		3	30	110	1	40

		i i
Schutzart	IP 20	ĺ
Betriebstemperatur	von 0 bis 40 °C; darüber ist der Strom um 1,7% pro °C zu reduzieren - maximal 60 °C	
Lagertemperatur	von - 25 bis + 70 °C	
Maximale Betriebshöhe	1000 m; darüber ist der Strom um 1,7% pro 100 m zu reduzieren	
Relative Luftfeuchtigkeit	maximal 75% ohne Kondensation	

Leistungsversorgungen

Die 3 Leistungsklassen der Stromversorgungen MDLL2 sind für die Antriebsverstärker MDLU und MDLA.

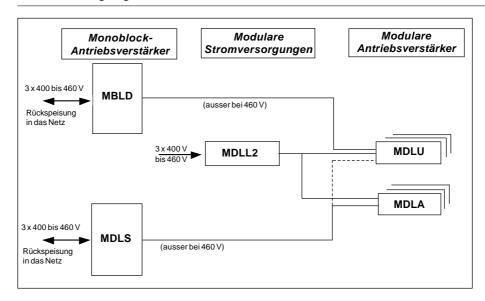
Stromversorgungsmodule			MDLL2N0	0
		008	015	030
Nennleistung	kW	8	12	30
Überlastung (4 s on - 6 s off)	kW	12,7	17,9	50
Maximal für die Stromversorgung zulässige, kontinuierliche Bremsleistung*	kW	8,2	14	33
Spitzenbremsleistung der Stromversorgung* (40 % des Zyklus) für die Leistungsdimensionierung des zugehörigen Widerstandes, siehe nachstehend.	kW	12,7	18	51
Leistung der Steuerstromversorgung der Achsen	W	180	180	180
Maximale Wärmeabgabe	W	70	165	280
Vom Kunden vorzusehende Sicherung vor der Stromversorgung	_	25 A; 400 V		63 A; 400 V
Leistung des eventuellen Transformators	kVA	12	19	48
Gewicht	kg	8,1	8,5	10,5
Breite	mm	8	0	140

Direkte Stromversorgungen MDLL2N00	400 bis 460 V; ± 10 %; 50-60 Hz
Getrennte Stromversorgung für den Sollwert	± 10 V; 50 mA
Getrennte Stromversorgung für logische Signale der Antriebsverstärker	+ 24 V; 500 mA
Schutzart	IP 20
Betrieb-, Lagertemperatur	wie für die Antriebsverstärker
Maximale Betriebshöhe	wie für die Antriebsverstärker

^{*} Der Bremswiderstand ist immer extern zur Stromversorgung.

Die Stromversorgungen werden mit der Abdeckung AEOCON007 geliefert (unten).

Richtlinie für die Dimensionierung der Leistungsversorgung


Um die richtige Stromversorgung entsprechend der Anzahl der zugehörigen Module zu bestimmen, müssen folgende Faktoren berücksichtigt werden:

- Die abgegebene Nennleistung den angeschlossenen Antriebe sowie die maximale Spitzenleistung w\u00e4hrend eines Fahrzyklus.
- Die gesammte Leistung der Steuerstromversorgung der angeschlossenen Antriebsverstärker.

Modulare Antriebsverstärker MDLU und MDLA

Zusammenfassende Tabelle der verschiedenen, möglichen Typen von Stromversorgungen für die modularen Antriebsverstärker

Externer Bremswiderstand (siehe Abmessungen Seite 6/13)

Der Bremswiderstand wird aussen an der Stromversorgung angeschlossen (Klemmen PA - PB).

Modulare Stromversorgung MDLL2N00	008 - 015	030
Referenz des normalerweise verwendeten Bremswiderstandes	MDLLQ115	MDLLQ130
Wert der Widerstände - Leistung	27 Ω - 480 W	6,8 Ω - 480 W

Wenn der Bremsbedarf jedoch die maximale Wärmeabgabe der Widerstände überschreitet, kann man die nachstehenden Zuordnungen verwenden.

Modulare Stromversorgung MDLL2N00	Widerstand	Anschluss	Ω	Dauerleistung (W)	Spitzenleistung 100 ms (kW)
008 015	4x MDLLQ115		27	1920	15
030	4x MDLLQ130		6,8	1920	59

Achtung: Wenn die verwendeten Widerstände nicht die vorgeschlagenen sind, müssen die Mindestwerte der Widerstände eingehalten und die kontinuierlichen Bremswerte der Stromversorgung dürfen nie überschritten werden.

Modulare Antriebsverstärker MDLU und MDLA

Begrenzung der Anzahl der Module

Die Leistung der Steuerspannungsversorgungen bei einer Stromversorgung MDLL beträgt 180 W. Bei einem Monoblock-Antriebsverstärker MDLS beträgt sie 140 W, bei einem MBLD2...N00A beträgt sie 155 W und bei einem MBLD2...N00R oder N00H beträgt sie 135 W.

Es muss darauf geachtet werden, dass die Gesamtsumme der von den angeschlossenen Antriebsverstärkern aufgenommenen Leistungen unter einem dieser beiden Grenzwerte liegt.

Grösse der Achsmodule	Einheit	007	014	021	034	050	075	100	150
Von den Achsmodulen MDLU2 aufgenommene Leistung	W	29	29	32	34	37	38	44	45
Von den Achsmodulen MDLA2 aufgenommene Leistung	W	22	22	25	27	29	29	29	40

Wenn die angeschlossenen Antriebsverstärker MDLU oder MDLA diese Grenzwerte der Hilfsspannung überschreiten, kann man eine zusätzliche Hilfsversorgung verwenden, die weitere 200 W bereitstellt. Referenz: MDLLQ2001N00 (Modul Grösse 1).

Wird mit den Antriebsverstärkern MDLU ein zusätzliches Messsystem verwendet, muss pro Messsystem 4W berücksichtigt werden.

Beispiel: Für eine Anlage bestehend aus 4 Modulen MDLU 14 A und 2 Modulen MDLU 50 A + 16 W für additive Geber erhält man: $4 \times 29 + 3 \times 37 + 16 = 243$ W.

W > 180, daher muss eine Hilfsversorgung MDLQ2001N00 vorgesehen werden.

Funktionen der Antriebsverstärkermodule MDLA mit analogem Sollwert

Basisfunktionen

- 2 Eingänge für Drehzahlsollwert (die auch als Drehmomenteingänge verwendet werden können)
- 1 logischer Eingang zur Umschaltung zwischen zwei Parametersätzen des Drehzahlregelkreises
- Programmierbare Rampe (10 ms bis 32 s)
- 1 analoger Eingang zur Drehmomentbegrenzung
- Thermischer Schutz des Antriebsverstärkers durch die Strombegrenzung
- Analoge Testpunkte zur Anzeige der internen, digitalen Grössen (Drehzahl, Strom usw.)
- Programmierbares Ausgangsrelais, das auf den Testpunkten den anzeigbaren Grössen zugeordnet werden kann
- Geber-Simulation (Inkrementalgeberausgang, 24 bis 3072 Linien pro Motorumdrehung).

Wenn die Module MDLA mit einem Motor BPH 055 verwendet werden, muss eine Resolver-Schnittstelle vorgesehen werden.

Best.-Nr.: MDLQ1CR04.

Optionen

02: Spielausgleich für einen leistungsfähigen Betrieb, wenn zwei Zahnräder die gleiche Zahnstange antreiben, um das Drehmoment zu erhöhen.

Achtung, die beiden betroffenen Antriebsverstärker müssen mit der Option 02 ausgerüstet sein.

Bestellnummerbeispiel: MDLA2021Q 02 N.

Anmerkung: Für einen Betrieb des Achspaares in Master-Slave müssen Standard-Antriebsverstärker gemäß der Anleitung von Num verwendet werden.

Anwendung: Zur Steuerung von zwei starr auf der gleichen Mechanik verkuppelten Motoren mit gleichem Drehmoment (die Motoren, Antriebsverstärker und Getriebe können unterschiedlich sein).

Modulare Antriebsverstärker MDLU

Funktionen der Antriebsverstärkermodule MDLU mit digitalem Sollwert

Die Antriebsverstärker MDLU2 besitzen in der Grundausführung zahlreiche Funktionen, die ihnen eine besondere Leistungsfähigkeit verleihen.

Basisfunktionen

- · Anschluss an die CNC über digitalen Bus
- 1 Messsystemeingang für das Motormesssystem (hochauflösender Inkremental- oder Absolutwertgeber)
- 1 Messsystemeingang für ein zusätzliches Messsystem
- 2 programmierbare Relaisausgänge
- 1 Sicherheitsrelais
- 2 konfigurierbare Testpunkte ± 10 V auf 12 Bit, was die Anzeige von zwei internen, digitalen Grössen ermöglicht
- 1 analoger Eingang auf 8 Bit mit Validierungseingang (für internen Test).

Das Motormesssystem wird auch für den Positionsregelkreis des Antriebsverstärkers verwendet.

Funktion Tandem

Diese Funktion umfasst 3 Algorithmen zur Verbesserung der Leistungen der Kinematik durch Anwendung von mehreren, mechanisch verbundenen Antriebsverstärkern:

Spielausgleich

Eine elektronische Vorspannung kompensiert automatisch das mechanische Spiel und erhöht somit die Festigkeit der Kraftübertragung: zwei Antriebsverstärker werden drehzahlgeregelt; die 2 zugeordneten Motoren liefern das gleiche Drehmoment bis auf die Vorspannung genau. Die CNC sieht nur einen der zwei Antriebsverstärker, der mit Positionsregelung gesteuert wird.

Anzahl der betroffenen Antriebsverstärker: 2, unbedingt identisch.

Anwendungsbeispiel: Übertragung Zahnrad/Zahnstange

Anmerkung: Für eine optimale Anwendung sollte die Umkehrbarkeit der Mechanik mindestens 80% betragen.

Drehmomentsynchronisation

Sie dient zur Verteilung der Verfahrkräfte einer einzigen und gleichen Achse auf mehrere Antriebsverstärker bei Gewährleistung einer gleichbleibenden Drehzahl: zwei Antriebsverstärker werden drehzahlgeregelt; die 2 zugeordneten Motoren liefern das gleiche Drehmoment. Die CNC sieht nur einen der zwei Antriebsverstärker, der mit Positionsregelung gesteuert wird.

Anzahl der betroffenen Antriebsverstärker: 2, unbedingt identisch.

Anwendungsbeispiel: Neigung eines Kopfes durch zwei Motoren, die jeweils auf einer Seite des Kopfes angebracht sind.

Anmerkung: Für eine optimale Anwendung sollte die Umkehrbarkeit der Mechanik mindestens 80% betragen und die Kinematik ausreichend fest sein. Außerdem erfordert die Regelung zwischen den beiden Antriebssystemen eines verformbaren Schlittens bzw. Portals (d.h. keine mechanische Verbindung zwischen den beiden Motoren) eine Synchronisation der Position. Dazu reicht eine Drehmomentsynchronisation in keinem Falle aus.

Drehmomentduplikation

Sie dient zur Verteilung der Verfahrkräfte einer einzigen und gleichen Achse auf mehrere Antriebsverstärker. Ein "Pilot"-Antriebsverstärker erhält von der CNC einen Positionssollwert und die anderen werden über einen gemeinsamen Drehmomentsollwert gesteuert. Die CNC sieht nur den als Pilot fungierenden Antriebsverstärker, der mit Positionsregelung gesteuert wird. Bei Stillstand können die Aufgaben neu zugeordnet werden (ein Pilot-Antriebsverstärker wird zum Nachläufer oder umgekehrt).

Anzahl der betroffenen Antriebsverstärker: 2 bis 4 gleicher Größe. Anwendungsbeispiel: zwei Werkstückträger, die abwechselnd verwendet werden, um das gleiche Werkstück zu tragen, und nach Neuzuordnung der Antriebsverstärker wieder unabhängig werden; ein Getriebe mit mehreren Eingängen ermöglicht den Erhalt eines Ausgangsdrehmomentes, das mit der Anzahl der Antriebsverstärker multipliziert wird.

Für den Einsatz der Funktion Tandem ist folgendes vorzusehen: 1 Kabelsatz **AEOKIT001** (Länge 0,7 m) für jeden als Nachläufer geschalteten Antriebsverstärker und die Option **000 453** für die CNC (siehe Seite 2/12).

Doppeltes Meßsystem und Kohärenzüberwachung

Die Position des Schlittens bzw. des Portals wird durch die mathematische Verarbeitung von Signalen bestimmt, die von zwei Gebern geliefert werden: eine indirekte Messung vom Motorgeber und eine direkte Messung vom Positionsgeber, um geringe mechanische Fehler auszugleichen.

Der Antriebsverstärker vergleicht auch die beiden Messungen und schaltet sich auf Sicherheitsstellung, wenn er eine Inkohärenz erfasst.

Aktive Filter (Active Damping)

Sie verbessern die Stabilität der Einstellungen einer Maschine, indem sie die Probleme der Kinematik reduzieren (Elastizität, Verwindung der Kugelschraube), was höhere Beschleunigungen und Verstärkungen ermöglicht. Die aktiven Filter werden hauptsachlich dann verwendet, wenn sich der Notch-Filter als unzureichend erweist. **Anmerkung:** Bei gleichzeitiger Verwendung einer Funktion Tandem und der aktiven Filter bei einem als

Anmerkung: Bei gleichzeitiger Verwendung einer Funktion Tandem und der aktiven Filter bei einem als Nachläufer geschalteten Antriebsverstärker kann es erforderlich sein, einen Impedanzadapter (Typ Heidenhain IBV606) einzusetzen. Bitte bei uns anfragen.

Notbremsung

Der Antriebsverstärker kann einen Motor entweder beim Schalten des Antriebsverstärkers auf Sicherheitsstellung oder bei einem Fehler des Gebersignals abbremsen. Die Art des Abbremsens kann in % des maximalen Drehmomentes der Zuordnung Motor/Antriebsverstärker parametriert werden.

Modulare Antriebsverstärker MDLU und MDLA

Funktionen der Antriebsverstärkermodule MDLU mit digitalem Sollwert (Fortsetzung)

Stromversorgung 460 V

Die Antriebsverstärker MDLU2 können entweder über eine externe Stromversorgung **MDLL2...N00** oder über Antriebsverstärker MBLD2 an das Drehstromnetz 400 V oder 460 V – 50/60 Hz angeschlossen werden (siehe Tabelle "Kompatibilität Motoren / Geber / Stromnetze" auf Seite 6/8).

Bus 700 VDC Gleichstrom

Wenn der Antriebsverstärker MDLU2 über einen Antriebsverstärker MBLD2xxxN00H versorgt wird, kann er die Motoren über einen geregelten 700 V Bus steuern. Dies ermöglicht die Steuerung von Motoren mit hoher EMK (Elektrospindel) oder eine weitere Leistungssteigerung der in diesem Katalog beschriebenen Motoren (es kann ein Drehstromnetz 400 oder 460 V 50/60 Hz sein). In diesem Fall müssen alle Servomotoren mit 700 V versorgt werden.

Anmerkung: Die Grenzwerte des Antriebsverstärkers MBLD2 sind auf den Seiten 6/14 und 6/18 angegeben.

Verwaltung der Motoren und Geber

Die Antriebsverstärker MDLU2 können auch andere Motoren steuern als die in diesem Katalog beschriebenen; zum Beispiel Drehmotoren (asynchron, synchron, mit Direktantrieb, Elektrospindeln...); Linearmotoren, Drehmomentmotoren...

Anmerkung: Um einen dieser Motoren zu steuern, erfragen Sie bitte bei Num eine vorhergehende Durchführbarkeitsstudie.

Außerdem bietet der MDLU2 folgende Eigenschaften:

- er akzeptiert eine Vielzahl von Gebern: Geber mit Schnittstelle EnDat oder Hiperface, mit Nullpunktmarkierung oder codiertem Referenzpunkt, rotativ oder linear, Lénord + Bauer, Zahnrad Num, sincos, inkrementale Drehgeber (Absolutwertgeber auf eine oder mehrere Umdrehungen), Sinus- oder TTL-Geber, Hallgeber, ...
- · er kompensiert sinusförmige Signale;
- · er verwaltet Thermosonden PTC oder NTC;
- er kann die Startposition des Rotors von rotativen oder linearen Synchronmotoren bestimmen, selbst wenn diese mit einem Inkrementalgeber ausgerüstet sind, und dies, ohne eine Bewegung des Rotors zu erfordern.

Kompatibilität MDLU2 / Motoren / Stromnetze

Motoren	Geber	Drehstr 400 V~	omnetz 460 V~	Geregelter 700 V Bus	Kommentare
		400 0	400 1	Gleichstrom	
Servomotoren					
BPH – BPG 075 à 190	P, Q	Χ	Х	X (2)	
	R, T, U	Χ	X (1)	X(1)(2)	
	A, B	Χ	-	-	
BPH 055	U	Χ	-	-	
BHL	P, Q	Χ	Χ	X(2)	Bei Version mit Zwangslüftung und
	R, (U)	Χ	X(1)	X(1)(2)	Drehstromnetz 460 V ist ein
	A, B	Χ	-	-	Spartransformator AMOTRF001
BML	R,U	Χ	-	-	vorzusehen
Spindelmotoren					
AMS	P, Q	Χ	Χ	X(2)	Bei einem Drehstromnetz 460 V ist ein
	R, U, H	Х	X(1)	X(2)	Spartransformator AMOTRF001
					vorzusehen
	B (8)	X	- (4)	-	
IM	(Q)	Х	(1)	-	Bei uns anfragen
	R, H	X	-	-	
MSA	V, C, G	X	(1)	-	
MSS	U, F	X	(1)	<u> </u>	
AMR	С	Х	Bei ur	ns anfragen	
Externe Stromversorgu	ngen		1 1/	T	
MBLL2xxxN00		X	X	-	
MBLQ2xx1N00		Х	X	X	
MBLU2xxxN00N	<u> </u>	Х	Х	Х	
Stromversorgungen üb	er MBLD2 f			00 bis 460 V W	
MBLD2xxxN00A		Х	Х	-	Monoblockantriebsverstärker standard
MBLD2xxxN00R		Х	Х	-	Monoblockantriebsverstärker mit Netzrückspeisung
MBLD2xxxN00H		Х	Х	Х	Monoblockantriebsverstärker mit Netzrückspeisung und geregeltem 700 V Bus

- (1) Für Motoren, die vor 2001 hergestellt wurden, bitte bei uns anfragen.
- (2) Bei einem besonderen Bedarfsfall bitte bei uns anfragen.
- Die in Klammern stehenden Geber sind derzeit nicht erhältlich. Bitte bei uns anfragen.

Modulare Antriebsverstärker MDLU und MDLA

Besonderheiten der Module MDLU (DISC NT) mit digitalem Sollwert

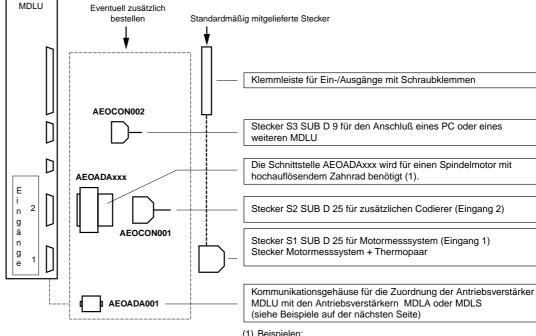
Anschlusskabel der verschiedenen Geber

Die Antriebsverstärker MDLU steuern Servomotoren und kleine Spindelmotoren mit einem hochauflösenden Messsystem (inkremental oder absolut) oder einem Standardresolver (1 oder 3 Polpaare). Sie besitzen einen zweiten Messsystemeingang für den Anschluss eines zusätzlichen Messsystems für den Lageregelkreis der CNC.

	Gebertyp	Anschlusskabel
Motor- messsystem	Hochauflösender Geber (Typ P oder Q) Resolver (3 Polpaare oder 1 Polpaar)	RPC001S
zusätzliches Messsystem	Geber mit Sinussignal 1 V eff TTL-Geber 5 V Geber EnDat	RPC002S

Wenn das Kabel länger als 150 m ist (Richtwert), muss das Kabel RPC002S mit 7 abgeschirmten Kabelpaaren verwendet werden, um Leitungsverluste zu vermeiden.

Wenn die Module MDLU mit einem Motor BPH 055 verwendet werden, muss man eine Resolverschnittstelle vorsehen.


Referenz: MDLQ1CR04.

Verbindung der Module MDLU mit der CNC

Siehe Seite 6/10.

Zubehör für MDLU - Stecker und Zubehör

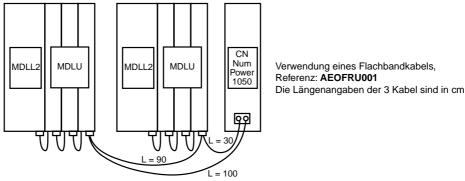
Detail der standardmässig mitgelieferten Stecker und der eventuell zusätzlich zu bestellenden Stecker.

- - Für einen Motor MSA mit einem Zahnrad Typ L nord Bauer oder Siemens SYZAG 2 ist die Schnittstelle AEOADA002 zu verwenden.
 - Für einen Motor mit Zahnrad, Typ NUM (Gerbertyp H, V, C, G) zusammen mit den Antriebsverstärkern MDLU und MBLD, ist die Schnittstelle AEOADA003 zu verwenden.


Modulare Antriebsverstärker MDLU und MDLA

Zubehör für die Konfiguration unterschiedlicher Antriebsverstärker

Konfiguration bei gemeinsamer Anwendung der Antriebsverstärker mit digitalem Sollwert MDLU (DISC NT) und der Antriebsverstärker mit analogem Sollwert MDLS oder MDLA


Der Datenaustausch zwischen einem Antriebsverstärker mit analogem Sollwert und einem Antriebsverstärker mit digitalem Sollwert erfordert ein Kommunikationsmodul, Referenz **AEOADA001** (in nachstehenden Zeichnungen mit einem Pfeil gekennzeichnet).

Für andere Konfigurationen als unten angegeben wenden Sie sich bitte an uns.

Verbindung von zwei Antriebsverstärken MDLU an der gleichen CNC

Zu verwendende Konfiguration, bei zwei separaten Antriebsverstärkerpaketen DISC NT, welche von zwei unterschiedlichen Speiseeinheiten versorgt und an die gleiche CNC angeschlossen werden.

Wenn das Kabel AEOFRU001 nicht passt, ist ein Kabel nach Mass anzufertigen, und zwar wie folgt:

- einen Satz mit 3 Steckern Best.-Nr. AEOCON008 (AEOADA001 + AEOCON007 + Stecker CNC 1050) bestellen;
- den Anschluss mit einem Kabel bestehend aus 3 verdrillten Kabelpaaren + allgemeine Abschirmung herstellen; Querschnitt der Kabel: 0,25 mm² (AWG24) (Falls kein passendes Kabel vorhanden ist, muss ein Kabel RSCAWG22X8 verwendet werden, indem man ein Paar freilässt).
- Die Länge der Kabel darf 30 m nicht überschreiten.

Modulare Antriebsverstärker MDLU und MDLA

Zübehörteile

Filter gegen elektromagnetische Störungen

Zur Einhaltung der EMV-Richtlinien wird die Verwendung eines Netzfilters vor der Leistungsversorgung empfohlen.

Grösse der Stromversorgung MDLL2N00	008 - 015	030
Referenz des Filters	AGOFIL003A	AGOFIL006A

Anmerkung: Der Antriebsverstärker besitzt einen einphasigen Eingang zur Versorgung der Steuerelektronik unabhängig vom Leistungsteil. Wenn dieser Eingang der Hilfsstromversorgung vor dem EMV-Filter des Leistungsteils abgegriffen wird, ist ein einphasiger EMV-Filter Referenz **AGOFIL001S** für jede Stromversorgung MDLL2... vorzusehen.

Abdeckhauben aus Metall für die Steckverbindungen (Option)

Um die EMV-Richtlinien einzuhalten, wird empfohlen, anstatt der Original-Abdeckhauben aus Kunststoff solche aus Metall einzusetzen. Dies gilt für bestimmte Steckverbindungen der Antriebsverstärker und spezifisch für die folgenden Produkte:

Antriebsverstärker	Stecker	Referenz der Abdeckhaube aus Metall
MDLU	S3 (9-polig, Stecker)	AEOCOP001
MDLA	P5 (15-polig, Stecker) J3 (25-polig, Stecker)	AEOCOP002 AEOCOP003

Tools und Programmiermodule

Module MDLU (DISC NT) mit digitalem Sollwert

Die Inbetriebnahme erfolgt mit der Software SETTOOL (für weitere Einzelheiten siehe Seiten 2/27 und 4/28).

Module MDLA mit analogem Sollwert

• Inbetriebnahme über einen PC

Die Integrationssoftware DPM ermöglicht eine komfortable Anwendung und einen komfortablen Betrieb des Produktes (Funktion elektronisches Oszilloskop).

Jeder Antriebsverstärker besitzt einen Eingang über eine serielle Schnittstelle RS232.

Referenz der Software: **PACNUMDPM**, bestehend aus einer Diskette 3,5" und einem Kabel mit 5 m Länge für den Anschluss an den PC.

Das Handbuch der Software DPM muss separat bestellt werden:

Referenz: 738 x 011 x: Landessprache des Handbuchs (F: Französisch - I: Italienisch - E: Englisch - D: Deutsch).

• Inbetriebnahme über das Programmiermodul MDLT 100

Das abnehmbare Programmiermodul, Referenz **MDLT100**, ermöglicht die Bearbeitung der Parameter des Antriebsverstärkers MDLA. Sie ist äusserst kompakt und wird direkt auf einen Stecker auf der Vorderseite des Antriebsverstärkers gesteckt. Sie ermöglicht ausserdem das Kopieren eines Parametersatzes von einem Antriebsverstärker auf den anderen.

Modulare Antriebsverstärker MDLU und MDLA

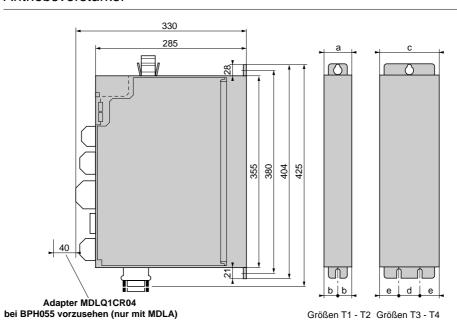
Installationshandbücher

Sie müssen separat bestellt werden.

Antriebsverstärker	Referenz des Handbuchs	Verfügbare Sprachen
MDLU (DISC NT)	AMOMAN002x und AMOMAN003x (1) (gemeinsam mit MBLD)	F, I, E
MDLA (analoger Sollwert)	738 x 008 (2)	F, I, E, D

- (1) (x) Sprache des Handbuchs (F: Franzôsisch I: Italienisch E: Englisch)
- (2) (x) Sprache des Handbuchs (F: Französisch I: Italienisch E: Englisch D: Deutsch).

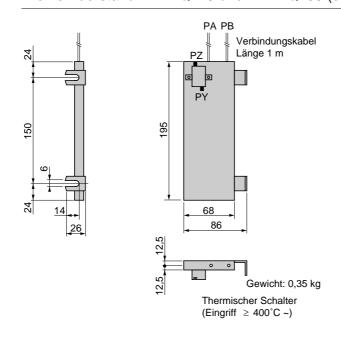
Prüfung des Antriebspaketes


Bevor Sie Ihre Wahl treffen, sollten Sie folgende Punkte kontrollieren:

- Jedes Modul ist korrekt dem gewählten Motor zugeordnet (siehe Kapitel 7 Zuordnungstabellen);
- Die Leistungsversorgung entspricht den erforderlichen Leistungskriterien;
- · Der Bremswiderstand ist korrekt dimensioniert;
- Die maximale Anzahl der Achsen ist nicht überschritten (Hilfsversorgung für den MDLU);
- Filter gegen elektromagnetische Störungen in Option;
- Die Mittel für Anwendung und Betrieb sowie die Handbücher.

Modulare Antriebsverstärker MDLU und MDLA

Abmessungen


Antriebsverstärker

Antriebsverstärker-						
module						
MDLU2 N00N	Größen	а	b	С	d	е
007	T1	50	25			
014						
021						
034	T2	80	40			
050						
075	T3			110	40	35
100	T4			140	70	35
150						

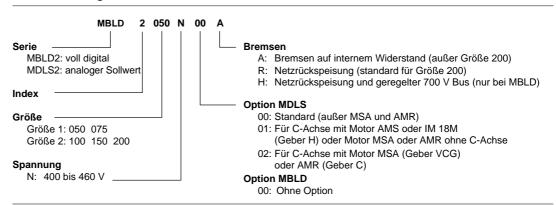
Stromversorgungs- module						
MDLL2 N00	Größen	а	b	С	d	е
008	T2	80	40			
015						
030	T4			140	70	35

Bremswiderstand MDLLQ115 und MDLLQ130 (siehe auch Seite 6/5)

Monoblockantriebsverstärker MBLD und MDLS

Einleitung

Die Monoblockantriebsverstärker mit digitaler Steuerung dienen zur Steuerung der Spindelmotoren AMS und IM sowie der Motorspindles MSA und MSS. Sie existieren in zwei Versionen:


- Version MBLD voll digital (DISC NT);
- Version MDLS mit analogem Sollwert ± 10 V.

Es handelt sich hierbei um Antriebsverstärker mit integrierter Stromversorgung und Bremswiderstand. Sie werden direkt am Netz 400 bis 460 V angeschlossen. Die Spannung am Gleichstrombus beträgt 560 V bei einem Drehstromnetz von 400 V.

Das Bremsen mit Netzrückspeisung ist als Option verfügbar.

Am Netz 400 V können sie ausserdem die Versorgung der modularen Antriebsverstärker MDLU und MDLA gewährleisten.

Identifizierung der Antriebsverstärker

Technische Daten

Grösse		Grö	sse 1	Grösse 2		
	heit	050	075	100	150	200
Totale aktive Nennleistung*	kW	30 (20)		37 (25)	45 (30)	62 (42)
Totale aktive Überlastleistung*(1)	kW	39 (33)		50 (44)	64 (66)	80 (88)
Im Schaltschrank abgegebene Leistung	kW	0,98		1,4	1,8	2,1
Nennstrom	Aeff	26	40	52	72	100
Maximaler Spitzenstrom in Betrieb S3-S6 (1)	Aeff	35	53	71	106	141
Spitzenstrom bei Betrieb S6 (1)	Α	50	75	100	150	200
Bremsleistung mit internem Widerstand - Dauerleistung - Spitzenleistung	kW kW	1,3 30		2,5 50	3,5 65	
Dauerbremsleistung - mit Bremswiderstand (2) - mit Rückspeisung in das Netz	kW kW	20 20		25 25	30 30	- 42
Spitzenbremsleistung - mit Bremswiderstand (2) (3) - mit Rückspeisung in das Netz (3)	kW kW	30 25		50 32	65 38	- 53
Interne Schutzsicherungen Typ Brush	_	80 A - 660 V		160 A - 660 V		
Verfügbare Nennleistung für die modularen Achsen (4)*	kW	20 (20) 30		30 (25)	30 (25) 30 (30)	
Logische Eingangssignale über Opto-Koppler (IEC 65A)	V	Niv.1: 1	Niv.1: 1 bis 30 VDC ; 120 mA maxi			
Logische Ausgangssignale über Opto-Koppler (IEC 65A) V Niv.1: 24 V ; 120 mA maxi						
Vom Kunden vor dem Antriebsverstärker vorzusehende Sicherung	_	80 A ; 6	00 V	125 A 600 V	160 A 600 V	200 A 600 V
Leistung des eventuellen Transformators	kVA	42		52	63	87
Gewicht	kg	27		57	•	63

- Die in Klammern stehenden Werte betreffen die Antriebsverstärker MBLD2...N00H (geregelter 700 V Gleichstrombus und Netzrückspeisung)
- (1) 4 min Betrieb 6 min Stillstand
- (2) Mit angepasstem, externem Bremswiderstand
- (3) S6: Betrieb 3 Minuten Stillstand 7 Minuten
- (4) a) Maximal verfügbare Leistung: $050 \le 11 \text{ kW}$; $075 \le 16 \text{ kW}$;
 - $100 \le 23 \text{ kW}$; $150 \le 31 (30) \text{ kW}$; $200 \le 42 \text{ kW}$.
 - b) Die Summe der Leistungen der Spindelmotoren und der Module MDLU2 muss kleiner als die totale aktive Nennleistung sein

Monoblockantriebsverstärker MBLD und MDLS

	MDLS	MBLD2N00A	MBLD2N00R oder N00H		
Drehstrom-Versorgungsspannung	400 bis 460 V; ± 10 %; 50-60 Hz				
Einphasen-Hilfsversorgung	400 bis 460 V; ± 10 %; 50-60 Hz				
Leistung der verfügbaren Hilfsspannungen für Antriebsverstärker MDLU und MDLA	140 W,50 V~, 35 kHz	155 W, 50 V~, 35 kHz	135 W, 50 V~, 35 kHz		
Spannung des Leistungsbus	560 V bei 400 V am Eingang 640 V bei 460 V am Eingang 700 VDC bei 400 oder 460 V am Eingang				
Verfügbare Stromversorgungen	± 10 V; 50 mA				
Stromversorgung für die logischen Ein-/Ausgänge	24 V; 700 mA				

Schutzart	IP 20
Betriebstemperatur	von 0 bis 40 °C; darüber ist der Strom um 1,7% pro °C zu reduzieren -maximal 60 °C
Lagertemperatur	von - 40 bis + 70 °C
Maximale Betriebshöhe	1000 m ; darüber ist der Strom um 1,7% pro 100 m zu reduzieren
Relative Luftfeuchtigkeit	Maximal 75 % ohne Kondensation

Richtlinie für die Dimensionierung

Wenn die Monoblockantriebsverstärker MBLD oder MDLS die modularen Antriebsverstärker MDLU oder MDLA versorgen, müssen die vier folgenden Bedingungen erfüllt sein:

- 1 Die Nennleistung des Spindelmotors darf nicht den unter Punkt (4) der Tabelle auf Seite 6/14 angegebenen Wert überschreiten.
- 2 Die Summe der Leistungen S der an den modularen, über einen Spindelantriebsverstärker MDLS2 oder MDLB2 versorgten Antriebsverstärkern MDLA2 oder MDLU2 angeschlossenen Motoren darf nicht die in der Zeile "Verfügbare Nennleistung für die modularen Achsen" der gleichen Tabelle angegebene Leistung überschreiten.
- 3 Die Summe der unter den beiden vorstehenden Punkten berechneten Leistungen darf nicht die in der Zeile "Totale aktive Nennleistung" (Tabelle Seite 6/14) angegebene Leistung überschreiten.
- 4 Die Summe der von den modularen Antriebsverstärkern aufgenommenen Hilfsleistungen darf 135 W, 140 W oder 155 W je nach Stromversorgungsquelle überschreiten siehe nachstehende Tabelle (siehe Seite 6/6 für die Verbrauchsdaten).

Bremswiderstand (Abmessungen siehe Seite 6/20)

Die Monoblockantriebsverstärker besitzen immer einen internen Bremswiderstand.

Wenn der Bremsbedarf die maximale Verlustleistung des Widerstandes überschreitet, kann man einen externen Widerstand verwenden, der für die Wärmeabführung ausserhalb des Schaltschrankes angebracht werden kann.

Mögliche Wahl	Verkabelung	Ω	Dauerleistung (kW)	Spitzenleistung 100 ms (kW)
1 x AGORES001	r r	13,5	2	16
1 x KFIG2	[[]	13,5	2,1	32
2 x KFIG2	<u> </u>	27	4,2	16
4 x KFIG2		13,5	8,4	32

Achtung: Wenn der gewählte Widerstand nicht aus obenstehender Tabelle entnommen wurde, muss dessen Mindestwert von 13,5 Ω für die Größe 050 und 075, von 9 Ω für die Größe 100 und von 6,75 Ω für die Größe 150 eingehalten werden, um die maximale, kontinuierliche Bremsleistung und die Maximalleistung des Antriebsverstärkers nicht zu überschreiten.

Die maximale kontinuierliche Bremsleistung auf den Widerstand entsprechend der Tabelle auf der vorstehenden Seite nicht überschreiten.

Für andere Konfigurationen bitte bei uns anfragen.

Monoblockantriebsverstärker MBLD und MDLS

Basisfunktionen und Optionen

Gemeinsame Funktionen der Antriebsverstärker MBLD und MDLS

- Begrenzung des Drehmomentstromes
- · Wechseln der Getriebestufe
- · Wechseln der elektrischen Beschaltung (Stern-Dreieck Beschaltung)
- · 2 dynamisch umschaltbare Parametersätze für die Drehzahlregelung
- · Oszillationen auf dem Drehzahlsollwert zur Umschaltung der Getriebestufe
- Mögliche Steuerung des Motors mit sehr niedriger Drehzahl, obwohl der Motor nur mit einem Resolver ausgerüstet ist (Pseudo-C-Achse).

Signale für die Automatisierung

- · Spindeldrehzahl erreicht/Strom erreicht
- Spindel dreht
- · Freigabe zum Wechseln der Getriebestufe

Andere Funktionen

- Mögliches Fernlöschen bestimmter Fehler
- 2 analoge Testpunkte zur Beobachtung der internen, digitalen Grössen.
- Steuerung des Leitungsschützes.

Spezifische Funktionen des Antriebsverstärkers MDLS

- · Rampe mit doppelter Flanke
- · Wahl der Abschaltung bei Netzausfall, Abschalten im Freilauf oder gebremstes Abschalten
- Synchronisierung des Drehmomentes zwischen zwei Motoren (Erhaltung eines h\u00f6heren resultierenden Drehmomentes).
- Spindelindexierung

Diese Funktion ermöglicht die Positionierung der Spindel auf eine der acht auf 360° vorprogrammierten Positionen.

Das mechanische Verhältnis zwischen dem Motor und der Spindel kann zwischen 1:1 und 1:12 variieren. Die Indexierung kann konfiguriert werden; die Positionierung erfolgt auf ± 0,2°. Nach der Indexierung sendet der Antriebsverstärker ein logisches Signal "Spindel indexiert".

In den folgenden zwei Fällen muss ein logischer Geber der Nullpunktposition der Spindel vorgesehen werden (Option - Best.-Nr. **BSPICAA080**4), der direkt auf die Spindel montiert wird:

- der Motorgeber ist ein Resolver mit 3 Polpaaren R, oder ein hochauflösender Geber "H"
- das mechanische Verhältnis zwischen dem Motor und der Spindel ist keine Ganzzahl.

Die erhaltene Präzision der Indexierung ist dann etwas geringer.

· Leistungsbegrenzung auf der Motorwelle.

Optionen MDLS

 Option 01: Erforderlich für die Funktion als C-Achse bei den Motoren AMS oder IM 18M mit hochauflösendem Messsystem Typ H. Ein Geber der Nullposition BSPICAA0804 muss dann separat bestellt werden. Diese Option ermöglicht auch die Steuerung der Motoren MSA (mit Geber V, C, G) oder AMR (Geber C), wenn keine C-Achse erforderlich ist.

Bestellnummerbeispiel: MDLS2050N01A.

Anmerkung: Wenn die C-Achse nicht gebraucht wird, kann der Standard-Antriebsverstärker 00 berwendet werden, selbst mit dem Geber H.

 Option 02: Erforderlich für die Funktion als C-Achse bei dem Motor MSA mit einem Messsystem Typ V, C oder G, oder bei einem Motor AMR mit Messsystem Typ C. In beiden Fällen ist der Geber der Nullposition BSPICAA0804 nicht erforderlich.

Bestellnummerbeispiel: MDLS2050N02A.

Monoblockantriebsverstärker MBLD und MDLS

Basisfunktionen und Optionen (Fortsetzung)

Gemeinsame Funktionen der Antriebsverstärker MBLD

Die Antriebsverstärker MBLD2 besitzen in der Grundausführung zahlreiche Funktionen, die ihnen eine besondere Leistungsfähigkeit verleihen.

Funktion Tandem

Diese Funktion umfasst 3 Algorithmen zur Verbesserung der Leistungen der Kinematik durch Anwendung von mehreren, mechanisch verbundenen Antriebsverstärkern:

• Spielausgleich

Eine elektronische Vorspannung kompensiert automatisch das mechanische Spiel und erhöht somit die Festigkeit der Kraftübertragung: zwei Antriebsverstärker werden drehzahlgeregelt; die 2 zugeordneten Motoren liefern das gleiche Drehmoment bis auf die Vorspannung genau. Die CNC sieht nur einen der zwei Antriebsverstärker, der mit Positionsregelung gesteuert wird.

Anzahl der betroffenen Antriebsverstärker: 2, unbedingt identisch.

Anwendungsbeispiel: Übertragung Zahnrad/Zahnstange

Anmerkung: Für eine optimale Anwendung sollte die Umkehrbarkeit der Mechanik mindestens 80% betragen.

· Drehmomentsynchronisation

Sie dient zur Verteilung der Verfahrkräfte einer einzigen und gleichen Achse auf mehrere Antriebsverstärker bei Gewährleistung einer gleichbleibenden Drehzahl: zwei Antriebsverstärker werden drehzahlgeregelt; die 2 zugeordneten Motoren liefern das gleiche Drehmoment. Die CNC sieht nur einen der zwei Antriebsverstärker, der mit Positionsregelung gesteuert wird.

Anzahl der betroffenen Antriebsverstärker: 2, unbedingt identisch.

Anwendungsbeispiel: Neigung eines Kopfes durch zwei Motoren, die jeweils auf einer Seite des Kopfes angebracht sind.

Anmerkung: Für eine optimale Anwendung sollte die Umkehrbarkeit der Mechanik mindestens 80% betragen und die Kinematik ausreichend fest sein. Außerdem erfordert die Regelung zwischen den beiden Antriebssystemen eines verformbaren Schlittens bzw. Portals (d.h. keine mechanische Verbindung zwischen den beiden Motoren) eine Synchronisation der Position. Dazu reicht eine Drehmomentsynchronisation in keinem Falle aus.

<u>Drehmomentduplikation</u>

Sie dient zur Verteilung der Verfahrkräfte einer einzigen und gleichen Achse auf mehrere Antriebsverstärker. Ein "Pilot"-Antriebsverstärker erhält von der CNC einen Positionssollwert und die anderen werden über einen gemeinsamen Drehmomentsollwert gesteuert. Die CNC sieht nur den als Pilot fungierenden Antriebsverstärker, der mit Positionsregelung gesteuert wird. Bei Stillstand können die Aufgaben neu zugeordnet werden (ein Pilot-Antriebsverstärker wird zum Nachläufer oder umgekehrt).

Anzahl der betroffenen Antriebsverstärker: 2 bis 4 gleicher Größe. Anwendungsbeispiel: zwei Werkstückträger, die abwechselnd verwendet werden, um das gleiche Werkstück zu tragen, und nach Neuzuordnung der Antriebsverstärker wieder unabhängig werden; ein Getriebe mit mehreren Eingängen ermöglicht den Erhalt eines Ausgangsdrehmomentes, das mit der Anzahl der Antriebsverstärker multipliziert wird.

Für den Einsatz der Funktion Tandem ist folgendes vorzusehen: 1 Kabelsatz **AEOKIT001** (Länge 0,7 m) für jeden als Nachläufer geschalteten Antriebsverstärker und die Option **000 453** für die CNC (siehe Seite 2/12).

Doppeltes Meßsystem und Kohärenzüberwachung

Die Position des Schlittens bzw. des Portals wird durch die mathematische Verarbeitung von Signalen bestimmt, die von zwei Gebern geliefert werden: eine indirekte Messung vom Motorgeber und eine direkte Messung vom Positionsgeber, um geringe mechanische Fehler auszugleichen.

Der Antriebsverstärker vergleicht auch die beiden Messungen und schaltet sich auf Sicherheitsstellung, wenn er eine Inkohärenz erfasst.

Aktive Filter (Active Damping)

Sie verbessern die Stabilität der Einstellungen einer Maschine, indem sie die Probleme der Kinematik reduzieren (Elastizität, Verwindung der Kugelschraube), was höhere Beschleunigungen und Verstärkungen ermöglicht. Die aktiven Filter werden hauptsachlich dann verwendet, wenn sich der Notch-Filter als unzureichend erweist.

Anmerkung: Bei gleichzeitiger Verwendung einer Funktion Tandem und der aktiven Filter bei einem als Nachläufer geschalteten Antriebsverstärker kann es erforderlich sein, einen Impedanzadapter (Typ Heidenhain IBV606) einzusetzen. Bitte bei uns anfragen.

Notbremsung

Der Antriebsverstärker kann einen Motor entweder beim Schalten des Antriebsverstärkers auf Sicherheitsstellung oder bei einem Fehler des Gebersignals abbremsen. Die Art des Abbremsens kann in % des maximalen Drehmomentes der Zuordnung Motor/Antriebsverstärker parametriert werden.

Stromversorgung 460 V

Siehe Tabelle "Kompatibilität Motoren / Geber / Stromnetze" auf Seite 6/18.

Monoblockantriebsverstärker MBLD und MDLS

Basisfunktionen und Optionen (Fortsetzung)

Bus 700 VDC Gleichstrom - MBLD "H"

Der Antriebsverstärker MBDL2 Ausführung "H" (Best.-Nr.: **MBDL2..N00H**) ermöglicht eine Erhöhung der Gleichspannung auf dem Bus (700 V=). Diese Ausführung ist dann von Nutzen, wenn ein Motor mit einer hohen EMK gesteuert werden muss (Elektrospindel)..

Der Antriebsverstärker MBDL2 Ausführung "H" gewährleistet in Verbindung mit unseren Spindel- oder Servomotoren, und/oder als Stromversorgung der Module MDLU2, eine potentielle Leistungssteigerung (in diesem Fall ist jedoch eine technische Überprüfung erforderlich; bitte bei Num anfragen).

Verwaltung der Motoren und Geber

Die Antriebsverstärker MBLD2 können auch andere Motoren steuern als die in diesem Katalog beschriebenen; zum Beispiel Drehmotoren (asynchron, synchron, mit Direktantrieb, Elektrospindeln usw.), Linearmotoren, Drehmomentmotoren...

Anmerkung: Um einen dieser Motoren zu steuern, erfragen Sie bitte bei Num eine vorhergehende Durchführbarkeitsstudie.

Außerdem bietet der MBLD2 folgende Eigenschaften:

- er akzeptiert eine Vielzahl von Gebern: Geber mit Schnittstelle EnDat oder Hiperface, mit Nullpunktmarkierung oder codiertem Referenzpunkt, rotativ oder linear, Lénord + Bauer, Zahnrad Num, sincos, inkrementale Drehgeber (Absolutwertgeber auf eine oder mehrere Umdrehungen, Sinus- oder TTL-Geber, Hallgeber, ...
- er kompensiert sinusförmige Signale;
- · er verwaltet Thermosonden PTC oder NTC;
- er kann die Startposition des Rotors von rotativen oder linearen Synchronmotoren bestimmen, selbst wenn diese mit einem Inkrementalgeber ausgerüstet sind, und dies, ohne eine Bewegung des Rotors zu erfordern.

Kompatibilität MBLD2 / Motoren / Stromnetze

Motoren	Geber	Drehstr	omnetz	Geregelter	Kommentare				
		400 V~	460 V~	700 V Bus					
				Gleichstrom					
Servomotoren									
BPH – BPG 075 à 190	P, Q	Χ	Χ	X (2)					
	R, T, U	Χ	X (1)	X(1)(2)					
	A, B	Χ	-	-					
BPH 055	U	Χ	-	-					
BHL	P, Q	Х	Х	X(2)	Bei Version mit Zwangslüftung und				
	R, (U)	Х	X(1)	X(1)(2)	Drehstromnetz 460 V ist ein				
	A, B	Χ	-	-	Spartransformator AMOTRF001				
BML	R,U	Х	-	-	vorzusehen				
Spindelmotoren									
AMS	P, Q	Х	Х	X(2)	Bei einem Drehstromnetz 460 V ist ein				
	R, U, H	Х	X(1)	X(2)	Spartransformator AMOTRF001				
					vorzusehen				
	В	Χ	-	-					
IM	(Q)	Χ	(1)	-	Bei uns anfragen				
	R, H	Х	-	-					
MSA	V, C, G	Χ	(1)	-					
MSS	U, F	Χ	(1)	-					
AMR	С	Χ	Bei ur	ns anfragen					
Ausführungen des MBL	.D2								
MBLD2xxxN00A		Χ	X	-	Monoblockantriebsverstärker standard				
MBLD2xxxN00R		Х	Х	-	Monoblockantriebsverstärker mit				
					Netzrückspeisung				
MBLD2xxxN00H		Х	Х	X	Monoblockantriebsverstärker mit				
					Netzrück-speisung und geregeltem				
					700 V Bus				

- (1) Für Motoren, die vor 2001 hergestellt wurden, bitte bei uns anfragen.
- (2) Bei einem besonderen Bedarfsfall bitte bei uns anfragen.

Die in Klammern stehenden Geber sind derzeit nicht erhältlich. Bitte bei uns anfragen.

Monoblockantriebsverstärker MBLD und MDLS

Netzrückspeisung und EMV-filter

Netzrückspeisung (MBLD/MDLS)

Die Netzrückspeisung ist zu verwenden, wenn der Motor einen kurzen Zyklus mit häufigem Abbremsen ausführen muss, besonders bei hoher rückwirkender Massenträgheit der Spindel.

Für die maximal verwendbare Bremsleistung siehe die technischen Daten des Antriebsverstärkers.

Die Netzrückspeisung erfordert:

- Eine Drossel vor dem Antriebsverstärker (siehe zusammenfassende Tabelle Seite 6/27).
- Ein einphasiger Trenntransformator für die Hilfsversorgung CL1-CL2, um eine Beschädigung des Antriebsverstärkers zu vermeiden.

Dieser Transformator muss folgende Daten aufweisen:

- Primär/sekundär: 400 oder 460 V 50/60 Hz, je nach Netzspannung
- Übertragungsverhältnis: 1
- Isolationsklasse: H
- Isolationsspannung: 2500 V
- P: 600 VA.

Es wird empfohlen, vor dem Antriebsverstärker einen EMV-Filter zu verwenden. Wenn kein EMV-Filter verwendet wird, muss unbedingt ein Filter mit der Best.-Nr. **HPPM166** verwendet werden.

EMV-Filter (MBLD/MDLS)

Zur Einhaltung der elektromagnetischen Verträglichkeit wird die Verwendung eines Filters vor dem Antriebsverstärker empfohlen (Seite 6/26, 6/27).

Zusammenfassende Tabelle der Induktanzen, Transformatoren und Filter für MBLD2/MDLS

• EG-konforme Ausrüstungen

	Größe	Dimensionierung	Induktanz (1)	Transformator	Leistungsfilter (EMV)	Steuerfilter (EMV)
	1	050	-	-	AGOFIL004A	AGOFIL001S (2)
32/ 02 04		075			AGOFIL006A	
MDLS2/ MBLD2 N00A	2	100			AGOFIL007A	
M M .:		150			AGOFIL010A	
		200			AGOFIL009A	
	1	050	AGOREA001	Einphasen-	AGOFIL004A	
32/ 32/ 3R		075		Trenntransformator	AGOFIL006A	
MDLS2/ MBLD2 N00R	2	100	AGOREA002	(auf den Eingängen	AGOFIL007A	
M M:		150		CL1 – CL2) – Keine	AGOFIL010A	
		200	AGOREA003	BestNr.	AGOFIL009A	
	1	050	AGOIND001		AGOFIL004A	
32/ 22/		075			AGOFIL006A	
Z Z S	2	100	AGOIND002		AGOFIL011S	
MDLS2/ MBLD2 N00H		150			AGOFIL012S	
		200	AGOIND003			

- (1) Vor dem Antriebsverstärker unbedingt erforderlich, sei es EG-konforme Ausrüstung oder nicht.
- (2) Erforderlich, wenn sich der einphasige Eingang CL1- CL2 vor dem EMV-Filter befindet.
- Nicht EG-konforme Ausrüstungen

	Größe	Dimensionierung	Induktanz (1)	Transformator	Leistungsfilter (1)	Steuerfilter
	1	050	=	=	=	AGOFIL001S
32/ 32/		075				(2)(3)
MDLS2/ MBLD2 N00A	2	100				
M M.:		150				
		200				
	1	050	AGOREA001	Einphasen-	HPPM166	
2228		075		Trenntransformator		
MDLS2/ MBLD2 N00R	2	100	AGOREA002	(auf den Eingängen		
Ĭ Z Z:		150		CL1 – CL2) – Keine BestNr.		
		200	AGOREA003	DestIVI.		
	1	050	AGOIND001			
32/ 32/		075				
MDLS2/ MBLD2 N00H	2	100	AGOIND002			
M M		150				
		200	AGOIND003			

- (1) Vor dem Antriebsverstärker unbedingt erforderlich, sei es EG-konforme Ausrüstung oder nicht.
- (2) Erforderlich, wenn sich der einphasige Eingang CL1- CL2 vor dem EMV-Filter befindet.
- (3) Empfohlen

Monoblockantriebsverstärker MBLD und MDLS

Zübehör

Abdeckhauben aus Metall für die Steckverbindungen (Option)

Um die EMV-Richtlinien einzuhalten, wird empfohlen, anstatt der Original-Abdeckhauben aus Kunststoff solche aus Metall einzusetzen. Dies gilt für bestimmte Steckverbindungen der Antriebsverstärker und spezifisch für die folgenden Produkte:

Antriebsverstärker	Stecker	Referenz der Abdeckhaube aus Metall
MBLD	S3 (9-polig)	AEOCOP001
MDLS	M1 (9-polig)	AEOCOP001
	M3, M6 (15-polig)	AEOCOP002
	M2 (25-polig)	AEOCOP003

Betriebsmittel

Antriebsverstärker MDLS

Die Inbetriebnahme und Überwachung des Antriebsverstärkers MDLS (Ein- und Auslesen der Parameter, Personalisierung, Anzeige des Fehlers nach einer Schaltung auf Sicherheitsstellung usw.) erfolgt über die PC Software CPM. Der PC wird dabei über die serielle Schnittstelle mit dem MDLS verbunden.

Es werden die Software CPM und das viersprachige (französisch, italienisch, englisch, deutsch: Referenz **738IEF016**) Installationshandbuch für den Antriebsverstärker mitgeliefert.

Für die serielle Verbindung mit dem PC kann man ein Kabel Referenz 5PROPC (Länge 5 m) bestellen.

Antriebsverstärker MBLD

Die Anwendung und der Betrieb des Antriebsverstärkers MBLD erfolgen über einen PC mit der Software SETTool. Für weitere Einzelheiten siehe Seite 2/27 und 4/28.

Installationshandbücher

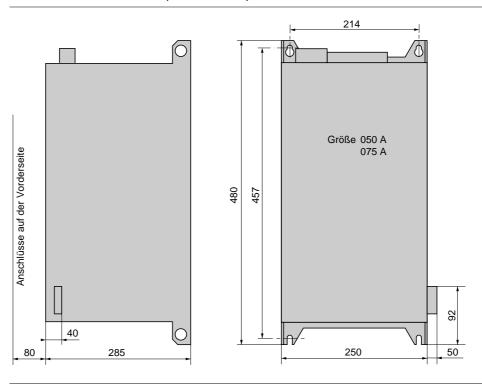
Die Handbücher müssen separat bestellt werden.

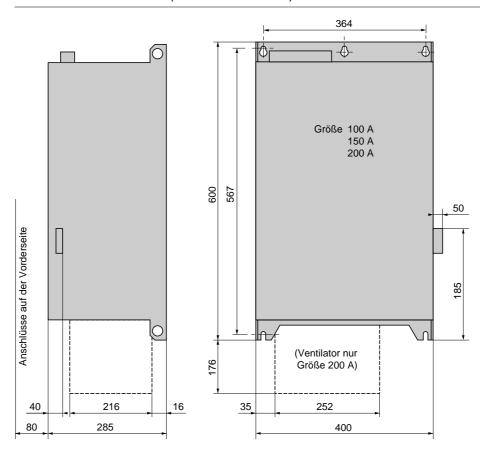
Antriebsverstärker	Referenz des Handbuchs	Sprache
Antriebsverstärker MBLD (DISC NT)	AMOMAN002x und AMOMAN003x (1) (gemeinsam mit MDLU)	F, I, E
Antriebsverstärker MDLS (analoger Sollwert)	738 x 013 (2)	F, I, E, D

- (1) (x) Sprache der Handbücher F: Französisch; I: Italienisch; E: Englisch.
- (2) (x) Sprache der Handbücher F: Französisch; I: Italienisch; E: Englisch; D: Deutsch.

Gesamtkontrolle

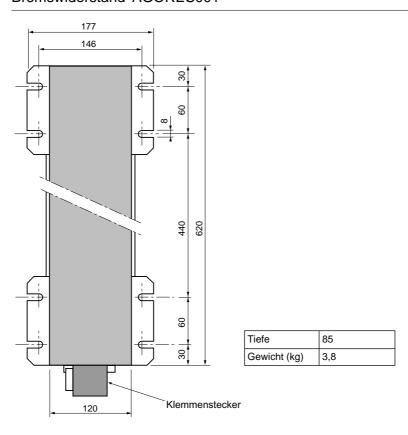
Bevor Sie Ihre Wahl treffen, sind folgende Punkte zu kontrollieren:

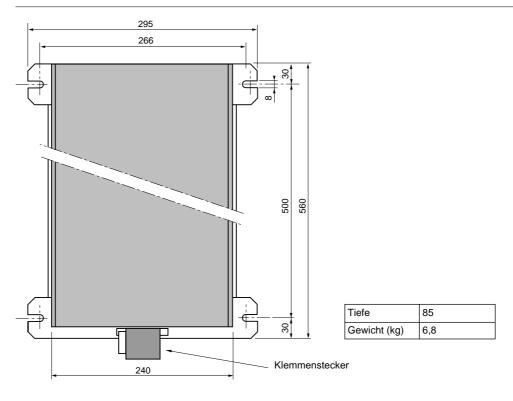

- Jeder Antriebsverstärker ist korrekt dem gewählten Motor zugeordnet (siehe Kapitel 7 Zuordnungstabellen):
- Der Antriebsverstärker besitzt ausreichend Leistung zur Versorgung der Spindel sowie der gewählten Antriebsverstärkermodule MDLU oder MDLA;
- Der Bremswiderstand ist korrekt dimensioniert;
- Die Netzinduktanz ist bei Netzrückspeisung oder für die Ausführung "H" vorgesehen;
- Die maximale Anzahl der Achsen ist nicht überschritten (Stromversorgung der Achsen MDLU oder MDLA);
- · Filter gegen elektromagnetische Störungen in Option;
- Die Betriebsmittel sowie die Installationshandbücher.


Monoblockantriebsverstärker MBLD und MDLS

Abmessungen

MBLD/MDLS Grösse 1 (050 - 075 A)


MBLD/MDLS Grösse 2 (100 - 150 - 200 A)


Monoblockantriebsverstärker MBLD und MDLS

Abmessungen

Bremswiderstand AGORES001

Bremswiderstand KFIG2

Monoblockantriebsverstärker für eine Achse MNDA

Einleitung


Der Antriebsverstärker MNDA dient zur Steuerung der Servomotoren BPH, BPG, BML anhand eines Sollwertes ± 10 V. Er ist kompakt und enthält die Stromversorgung und den Bremswiderstand. Er wird direkt am Drehstromnetz 400 VAC angeschlossen.

Eine integrierte, serielle Verbindung RS232 ermöglicht den Anschluss an einen PC.

Der Antriebsverstärker MNDA kann optional eine Geber-Emulation mit einem inkrementalen Positionsausgang liefern, der über den Resolver ausgewertet wird.

Er ist besonders für Werkzeug- und Spezialmaschinen mit 1 bis 4 Achsen geeignet.

Identifizierung der Antriebsverstärker

Technische Daten

Grösse des Antriebsverstärkers	Einheit	010	015	025
Nennstrom	A eff	4	7	13
Maximalstrom	A eff	7	11	18
Spitzenstrom	Α	10	15	25
Verlustleistung bei Nennstrom	W	100	110	180
Interner Bremswiderstand	Ω	68 Ω; 150 W		47Ω -150 W
Hilfsspannungen	Vcc	24 V - 100 mA	; ± 10 V - 7 mA	
Gewicht	kg	6		

Direkte Stromversorgung am Drehstromnetz Einphasige Hilfsversorgung Schutzart			400 V; + 10 % - 20 %; 50-60 Hz 400 V; + 10 % - 20 %; 50-60 Hz ; 40 VA IP 20
Betriebstemperatur von 0 bis 40° C; darül maximal 60 °C			r Strom um 1,7% pro °C zu reduzieren -
Lagertemperatur	von - 25 bis + 70 °C		
Maximale Betriebshöhe	1000 m; darüber ist d	er Strom	um 1,7% pro 100 m zu reduzieren
Relative Luftfeuchtigkeit	maximal 90 % ohne K	Condensat	tion

Bremswiderstand

Der Bremswiderstand ist im Antriebsverstärker integriert. Wenn der Bremsbedarf jedoch die maximale Verlustleistung des Widerstandes überschreitet, kann man einen externen Widerstand anstelle des internen Widerstandes verwenden.

Die einzuhaltenen Grenzwerte lauten:

Grösse 010 und 015	R > 68 Ω - Nennleistung < 600 W
Grösse 025	R > 47Ω - Nennleistung < 1 300 W

Monoblockantriebsverstärker MNDA

Basisfunktionen und Optionen

- Analoger Drehzahlsollwert ± 10 V
- Digitale Rampen (2 dynamisch umschaltbare Rampen)
- Analoge Strombegrenzung
- · Mögliche Regelung von Drehzahl oder Drehmoment
- Hilfsversorgung der Steuerelektronik (um das Positionssignal zu puffern, wenn der Leistungsteil abgeschaltet wird)
- Analoge Ausgänge zur Anzeige der internen, digitalen Grössen.

Logische Befehle

- · Freigabe von Drehzahl und Drehmoment
- Dynamisches Wechseln der Parameter des Drehzahlreglers (2 Parametersätze)
- · Wechseln der Rampe
- · Speicherung der erfassten Fehler.

Option

Der Antriebsverstärker MNDA kann über den Resolver ein inkrementales Positionssignal liefern:

- Basisauflösung: 3 072 Punkte pro Motorumdrehung für einen Resolver mit 3 Polpaaren,
- Andere mögliche Auflösungen: 1 536 oder 768 Impulse pro Motorumdrehung für einen Resolver mit 3 Polpaaren,
- · Signale RS422; Maximal nutzbare Entfernung: 50 m.

Wenn man nur ein Nullpunktsignal pro Motorumdrehung wünscht, ist ein Resolver mit 1 Polpaar zu verwenden.

Besonderheit

Wenn der Antriebsverstärker mit einem Motor BPH 055 verwendet wird, muss eine Resolverschnittstelle vorgesehen werden: Referenz MDLQ1CR04.

Filter gegen elektromagnetische Störungen

Zur Einhaltung der elektromagnetischen Verträglichkeit wird die Verwendung eines Netzfilters vor dem Antriebsverstärker empfohlen:

- Grösse 010 und 015 Referenz AGOFIL002A
- Grösse 025 Referenz AGOFIL003A

Der gleiche Filter kann für mehrere Antriebsverstärker verwendet werden, wenn dessen Nennstrom ausreichend ist (siehe Seite 6/26).

Beispiel: Ein Filter AGOFIL003A (30 A eff) kann für 4 Antriebsverstärker MNDA2015Q12 (7 A Nennstrom) verwendet werden.

Anmerkung: Der Antriebsverstärker besitzt einen einphasigen Eingang zur Versorgung der Steuerung unabhängig vom Leistungsteil. Wenn dieser Eingang der Hilfsstromversorgung vor dem EMV-Filter des Leistungsteils abgegriffen wird, ist ein einphasiger EMV-Filter Referenz **AGOFIL001S** für jeden Antriebsverstärker MNDA... vorzusehen.

Betriebsmittel

Die Anwendung und der Betrieb des Antriebsverstärkers MNDA erfolgen über einen PC mit der Software PC SET Link (MPM), die die Personalisierung des Antriebsverstärkers, das Ein- und Auslesen der Parameter, die Steuerung des Antriebsverstärkers vorort, die Wahl der an den Testpunkten anzuzeigenden Signale, die Anzeige der internen, digitalen Grössen und die Abfrage der gespeicherten Alarme gewährleistet.

Der Antriebsverstärker MNDA wird mit einer 3,5" Diskette geliefert, die die Parametersätze für den Motor und die Software MPM enthält.

Eventuell mitzubestellen:

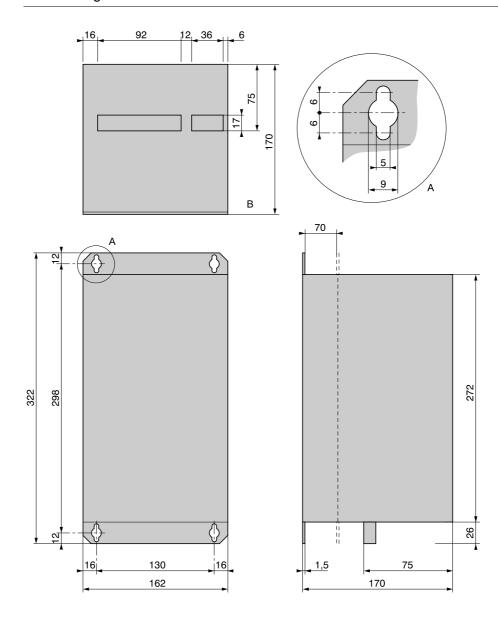
- Das Verbindungskabel für den PC, Referenz 5PROPC (Länge 5 m),
- Das Handbuch der Software PC Set Link, Referenz 738 x 001.
- (x) Sprache des Handbuchs: F: Französisch; I: Italienisch; E: Englisch; D: Deutsch.

Wenn man ausserdem die Möglichkeiten des digitalen Oszilloskopes verwenden möchte, ist die Software Referenz **2UACLINKPC** zu bestellen. Diese Referenz umfasst die 3,5" Diskette und das Verbindungskabel für den PC mit 5 m Länge, aber nicht das Handbuch **738 x 001**, das separat bestellt werden muss.

Monoblockantriebsverstärker für eine Achse MNDA

Installationshandbuch

Dieses muss separat bestellt werden: Referenz 738 x 006


(x) Sprache des Handbuchs: F: Französisch; I: Italienisch; E: Englisch; D: Deutsch.

Gesamtkontrolle

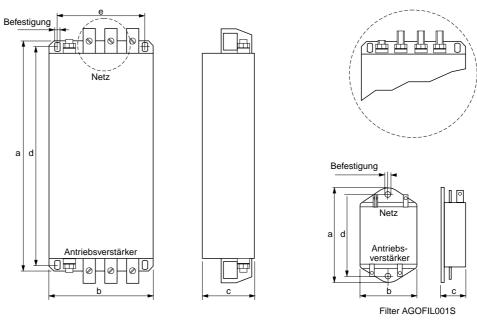
Bevor Sie Ihre Wahl treffen, sind folgende Punkte zu kontrollieren:

- Jeder Antriebsverstärker ist korrekt dem gewählten Motor zugeordnet (siehe Kapitel 7- Zuordnungstabellen);
- · Der Bremswiderstand entspricht den Betriebsbedingungen;
- Filter gegen elektromagnetische Störungen in Option;
- Die Betriebsmittel und die Installationshandbücher.

Abmessungen

Zubehör

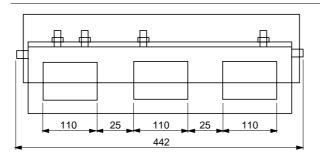
Filter gegen elektromagnetische Störungen

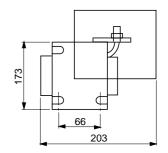

Elektrische Daten

Effektive Stromwerte der Filter gegen elektromagnetische Störungen

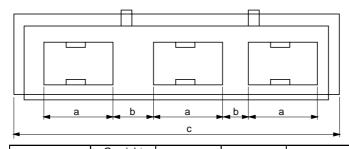
Referenz	Kenndaten	Alte Referenz
AGOFIL001S	2 x 3 A - 400V - 50/60Hz	HFI2001
AGOFIL002A	3 x 16 A - 250/480V - 50/60Hz	HFI3003
AGOFIL003A	3 x 30 A - 250/460V - 50/60Hz	HFI3004
AGOFIL004A	3 x 50 A - 250/480V - 50/60Hz	HFI3005
AGOFIL005F	3 x 50 A - 250/460V - 50/60Hz	HFI3075
AGOFIL006A	3 x 70 A - 250/480V - 50/60Hz	HFI3002
AGOFIL007A	3 x 100 A - 250/480V - 50/60Hz	HFI3006
AGOFIL008F	3 x 100 A - 250/460V - 50/60Hz	HFI3150
AGOFIL009A	3 x 200 A - 250/480V - 50/60Hz	HFI3007
AGOFIL010A	3 x 150 A - 250/480V - 50/60Hz	_
AGOFIL011S	3 x 100 A - 480V - 50/60Hz	_
AGOFIL012S	3 x 180 A - 480V - 50/60Hz	_

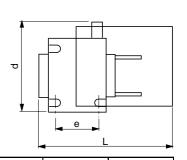
Der gleiche Filter kann für mehrere Antriebsverstärker verwendet werden, wenn dessen Nennstrom ausreichend ist. **Beispiel:** Ein Filter AGOFIL003A (30 A eff.) kann für 4 Antriebsverstärker MNDA2015Q12 (7 A Nennstrom) verwendet werden.

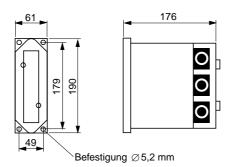

Abmessungen



Referenz	Α	bmes	sunge	n (mm	1)	Defeations	Cauriaht	Anschlüsse				
des Filters	а	b	С	d	е	Befestigung Ø mm	Gewicht kg	Steck- klemmen	Schraube	Faston	Klemmen	
AGOFIL001S	85	54	41	75	_	5,3	0,3			Х		
AGOFIL002A	230	98	38	213	80	4,5	1,4	Х				
AGOFIL003A	360	210	39	340	180	7	3	Х				
AGOFIL004A	360	210	50	340	180	7	3,2	х				
AGOFIL005F	245	100	90	220	70	4,5	4,1		M5			
AGOFIL006A	400	170	65	375	130	6,5	7,1	Х				
AGOFIL007A	400	170	65	375	130	6,5	8,8	Х				
AGOFIL008F	356	185	90	320	155	4,5	9,2		M6			
AGOFIL009A	550	220	153	500	180	6,5	13,1	х				
AGOFIL010A	400	170	90	375	130	6,5	9,1	Х				
AGOFIL011S	379	90	220	364	65	6,5	6				Х	
AGOFIL012S	438	110	240	413	80	6,5	11				Х	


Drosseln AGOREA Filter HPPM I66


Drosseln AGOREA/AGOIND - Abmessungen


	Gewicht (kg)
AGOREA001	14

•	Gewicht (kg)	а	b	С	d	е	L
AGOREA002	24	130	30	500	166	80	219
AGOREA002	36	130	30	500	166	80	254
AGOIND001	13	_	_	330	230	136	150
AGOIND002	18	_	_	330	280	136	150
AGOIND003	40	_	_	380	200	156	225

Filter HPPM 166 - Abmessungen

Gewicht: 1,2 kg

Inhaltsverzeichnis

Wahl des Motormesssystems	Seite
Messsystem für Servomotoren Messsystem Spindelmotoren	7/3 7/3
Zuordnung Servomotoren - Antriebsverstärker	
Zuordnung der Servomotoren BPH, BPG und BML zu den Antriebsverstärkern MDLU und MDLA Zuordnung der Servomotoren BHL zu den Antriebsverstärkern MDLU, MDLA und MBLD Zuordnung der Servomotoren BPH, BPG und BML zu den Antriebsverstärkern MNDA	7/4 7/5 7/6
Zuordnung Spindelmotoren - Antriebsverstärker	
Kenndaten	7/7
Zuordnung der Spindelmotoren AMS zu den Antriebsverstärkern MBLD und MDLS Zuordnung der Spindelmotoren IM 18M und AMR zu den Monoblockantriebsverstärkern MBLD	7/8
und MDLS	7/9
Zuordnung des Spindelmotors IM 18M 214 zu dem Antriebsverstärker UAC	7/9
Zuordnung der Spindelmotoren AMS zu den modularen Antriebsverstärkern MDLU	7/10
Zuordnung der Motorspindle MSA zu den Antriebsverstärkern MDLS	7/11
Zuordnung der Motorspindle MSS und MSA zu den Antriebsverstärkern MDLU	7/12
Zuordnung der Motorspindle MSA zu den Antriebsverstärkern MBLD	7/13

Wahl des Motormesssystem

Das in dem Motor eingesetzte Messsystem muss entsprechend nachstehender Tabelle ausgewählt werden. Die Wahl hängt von der Zuordnung Motor-Antriebsverstärker und der gewünschten Funktion ab.

Messsystem für Servomotoren

	CNC Num Power 10	50	CNC Num Power 1020/1040/1050/1060/1080 Antriebsverstärker mit analogem Sollwert			
Servomotoren	Antriebsverstärker Sollwert DISC NT	mit digitalem				
	MDLU Modular	MBLD Monoblock	MDLA Modular	MNDA Eine Achse		
BPH 055	U		U(1)			
BPH/BPG 075 à 190	R, U, T, P, Q		R, U, T			
BML 075	R, U		R, U			
BHL 260	R, P, Q	R, P, Q	R, (U)			

⁽¹⁾ Der Motor BPH 055 in Verbindung mit den Antriebsverstärkern MDLA oder MNDA erfordert das Adaptermodul für Resolver Best.-Nr. MDLQ1CR04.

Messsystem für Spindelmotoren

	CNC Num Powe	er 1050	CNC Num Power 1020/1040/1050/1060/1080			
Spindelmotoren	Antriebsverstä digitalem Sollw		Antriebsverstärker mit analogem Sollwert			
	MBLD2 Monoblock	MDLU2 Modular	MDLS Monoblock			
AMS	U(1), P, Q, R		R, U(1), H			
IM 18M	H, R, (Q)		R (Option Antriebsverstärker 00)			
			H (Option Antriebsverstärker 01)			
AMR	С		C (Option Antriebsverstärker 01 oder 02)			
MSA (ausser 285 und 320)	V, C		V, C (Option Antriebsverstärker 01 oder 02)			
MSA 285 und 320	G		G (Option Antriebsverstärker 02)			
MSS		U, F				

Kombination nicht verfügbar.

Die Geber in Klammern sind derzeit nicht lieferbar. Bitte bei uns anfragen.

(1) Das Messsystem U ist nicht erhältlich mit Motor AMS160

Beispiel: Ein Motor AMS 100 kann mit einem Antriebsverstärker MBLD2 oder MDLU2 verwendet werden, wenn er mit einem Messsystem Q ausgerüstet ist, oder mit einem Antriebsverstärker MDLS, wenn er mit einem Mess-System R, U oder H ausgerüstet ist.

Definition der verschiedenen Geber

- R Resolver mit 3 Polpaaren, 3 Nullpunkte pro Motorumdrehung (für alle geläufigen Applikationen).
- T Resolver mit 3 Polpaaren und Vorinstallation für einen zusätzlichen Drehgeber. Ausserdem ist der hintere Flansch des Motors für die Aufnahme eines Zwischenstücks **BMHQF426** vorgebohrt. Darauf kann ein Drehgeber des Typs ROD426 oder gleichwertig montiert werden.
 - Bei der Lieferung ist die Bohrung im hinteren Flansch durch eine aufgeschraubte Metallplatte verschlossen. Ausserdem kann eine Kupplung **BMHQG10** für die Verbindung zwischen Motor und Drehgeber geliefert werden.
- U, F
 Resolver mit 1 Polpaar; 1 Nullpunkt pro Motorumdrehung (Innen- und Aussendurchmesser unterschiedlich).
 P
 Hochauflösendes Absolutwertmess-System für die Applikationen DISC NT. Dieser Geber besitzt eine
- Nullposition. Er erfordert nicht die Verwendung eines Gebers BSPICAA0804.

 Hochauflösendes Inkrementalmess-System für die Applikationen DISC NT. Dieser Geber besitzt eine
- Q Hochauflösendes Inkrementalmess-System für die Applikationen DISC NT. Dieser Geber besitzt eine Nullposition. Er erfordert nicht die Verwendung eines Gebers BSPICAA0804.
- H Hochauflösendes Messsystem für die Applikationen mit C-Achse.
- V, C, G Hochauflösendes Messsystem für die Applikationen mit C-Achse

Zuordnung der Servomotoren BPH, BPG und BML zu den Antriebsverstärkern MDLU und MDLA

			Permanentes	Drehzahl-	Grösse	Moment	ВІ	PH	BPG	Perma-	P =
			Drehmoment	leistung	Antriebs-	maximal	Trägheit	Trägheit	Trägheit	nenter	Cn x ωn
	Motor	en	im Stillstand	-	verstärker		Rotor	Rotor	Rotor	Strom im	/1000
			(100 K)		MDLU		ohne	mit		Stillstand	
			Cn (1)	ωn	MDLA			Bremse	. In	ωdim	
Nr.		3PG	(Nm)	(min ⁻¹)		(Nm)	(g.m²)	(g.m²)	(g.m²)	(A eff)	(kW) (2)
1	055	2S	0,4	8 000	007	1,4	0,024	0,025		1,07	0,33
2	075	1N	1,3	3 000	014	5,2	0,08	0,12	0,254	2,2	0,41
3		1V		6 000	014	3,9				3	0,82
4		2N	2,3	3 000	014	7,5	0,12	0,16	0,304	2,7	0,72
5		_2V		6 000	014	5,9				3,5	1,45
6		4N	4	3 000	014	11	0,21	0,25		3,5	1,26
7	095	2N	4,3	3 000	014	11	0,3	0,41	0,86	3,5	1,35
8		2V		6 000	021	10				5,9	2,70
9		3N	6	3 000	021	16	0,41	0,52	0,97	5,2	1,88
10		3V		6 000	034	14				10,3	3,77
11		5N	9,2	3 000	021	22	0,64	0,75		5,8	2,89
12	115	2N	7,4	3 000	021	16	0,7	1,07	2,45	5,5	2,32
13		2V		6 000	034	14				10,5	4,65
14		3K	10,5	2 000	021	24	0,97	1,34		5,3	2,20
15		3N		3 000	034	22			2,73	9,2	3,30
16		3V		6 000	034	18				12,6	6,59
17		4K	13,3	2 000	021	27	1,25	1,62		6,2	2,78
18		4N		3 000	034	27				10,1	4,18
19		4V	40.7	6 000	050	23	4.0	0.47		17,6	8,35
20	440	6N	18,7	3 000	034	33	1,8	2,17		12	5,87
21	142	2K	12	2 000	021	22	1,59	2,54	0.7	6	2,51
22		2N		3 000	034	20			6,7	10,4	3,77
23		2R 3K	17	4 250	034	19	0.10	2.14		11,5	5,34
24 25		3N	17	2 000	034	33	2,19	3,14	7.0	9,5	3,56
26		3R		3 000 4 250	034 050	28 28			7,3	11,7	5,34 7,56
27		4K	22	2 000	034	41	2,79	3,74	7.0	16,9 10,4	
28		4N	22	3 000	050	41	2,79	3,74	7,9	15,6	4,61 6.01
29		4N 4R		4 250	050	41				20,8	6,91 9,79
30		7N	35	3 000	075	71	4,29	5,24	9,7	24,2	11,0
31	190	2K	25	2 000	050	40	5,14	8,25	20,9	16,6	5,23
32	190	2N 2N	20	3 000	050	35	3,14	0,25	20,9	19,9	5,23 7,85
33		2R		4 250	030	36				29,2	7,65 11,1
34		3K	36	2 000	050	52	7,1	10,2		19,7	7,54
35		3N		3 000	075	54	,,,	10,2	22,9	27,8	11,3
36		4K	46	2 000	075	90	9,04	12,1	22,0	20,6	9,63
37		4N	10	3 000	075	69	0,07	,.		30,3	14,5
38		5H	56	1 500	050	82	11	14,1		20	8,79
39		5L		2 500	075	79	''	. *, '		31,4	14,7
40		7K	75	2 000	075	120	14,9	18		27,9	15,7
41		AK	100	2 000	100	145	20,75	23,8		44	21
				_ 500	150 (3						
					1	,					

Nr.	BML									
42	075	1V	1,1	6000	014	3,6	0,08		2,8	0,69
43		3N	2,8	3000	014	7	0,15		4	0,87
44		3V		6000	021	7,2			5,8	1,75

Motor nicht verfügbar

⁽³⁾ Wird derzeit untersucht.

⁽¹⁾ Die Werte für Drehmoment und Strom gelten für eine Erwärmung des Gehäuses von 100 K. Bei einer auf 60 K begrenzten Erwärmung sind diese Werte mit 0,77 zu multiplizieren.

Werte für Drehmoment: theoretische Toleranz ± 10 %; typische Toleranz ± 5 %.

Wenn der Motor auf einem thermisch isolierenden Träger montiert ist, sind die Werte für Drehmoment um weitere 10% zu reduzieren.

⁽²⁾ Numerischer Wert zur vereinfachten Dimensionierung des Spindelverstärkers (vgl. Seite 6/13).

Zuordnung der Servomotoren BHL zu den Antriebsverstärkern MDLA, MDLU und MBLD

Der Motor BHL kann über einen Achsantriebsverstärker MDLA oder MDLU 150 oder über einen Spindelantriebsverstärker MBLD gesteuert werden.

	Motoren			Drehzahl- leistung	Grösse Antriebs- verstärker MDLA /	Moment maximal	Träghe ohne	it Rotor	Perma- nenter Strom im Stillstand	P = Cn x ωn / 1000
Nr.		BHL 260	Stillstand Cn (1) (Nm)	(ωn)	MDLU MBLD	(Nm)	Bremse (g.m²)	Bremse (g.m²)	In (Aeff)	(kW) (2)
1	1N	Ohne Zwangs- lüftung	85	3000	MDLA2 150 / MDLU2 150	165	45	48,1	52	26,7
2	1N	Mit Zwangs- lüftung	98						60	30,8
3	2K	Ohne Zwangs- lüftung	120	2000		230	66,2	69,3	52	25,1
4	2K	Mit Zwangs- lüftung	139						60	29,1
5	1N	Ohne Zwangs- lüftung	85	3000	MBLD2 150	165	45	48,1	52	26,7
6	1N	Mit Zwangs- lüftung	117						72	36,7
7	2K	Ohne Zwangs- lüftung	120	2000		230	66,2	69,3	52	25,1
8	2K	Mit Zwangs- lüftung	160						69	33,5
9	1N	Ohne Zwangs- lüftung	85	3000	MBLD2 200	210	45	48,1	52	26,7
10	1N	Mit Zwangs- lüftung	120						75	37,7
11	2K	Ohne Zwangs- lüftung	120	2000		290	66,2	69,3	52	25,1
12	2K	Mit Zwangs- lüftung	160						69	33,5

⁽¹⁾ Die Werte für Drehmoment und Strom gelten für eine Erwärmung des Gehäuses von 100 K. Bei einer auf 60 K begrenzten Erwärmung sind diese Werte mit 0,77 zu multiplizieren.

Werte für Drehmoment: theoretische Toleranz ± 10 %; typische Toleranz ± 5 %.

Wenn der Motor auf einem thermisch isolierenden Träger montiert ist, sind die Werte für Drehmoment um weitere 10% zu reduzieren.

⁽²⁾ Numerischer Wert zur vereinfachten Dimensionierung des Spindelverstärkers.

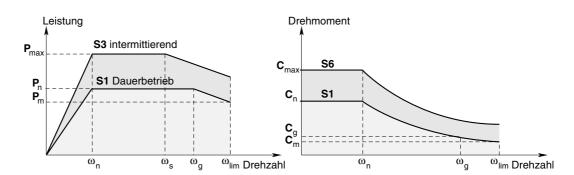
Zuordnung der Servomotoren BPH, BPG und BML zu den Antriebsverstärkern MNDA

			Permanentes Drehmoment	Drehzahl- leistung	Grösse Antriebs-	Moment maximal	BPH/E Trägheit	ML Trägheit	BPG Trägheit		P= Cn x ωn
1	Motore	n	im Stillstand		verstärker		Rotor	Rotor	Rotor	Strom im	/1000
					MNDA2		ohne	_ mit		Stillstand	
							Bremse	Bremse			
NI=	DDU I	3PG	Cn (1)	ωn (min-1)	0 ""	(NIm)	(a m2)	(a m2)	(a m2)	In (A off)	(14)(1)
Nr.			(Nm)	(min ⁻¹)	Qxx	(Nm)	(g.m²)	(g.m²)	(g.m²)	(A eff)	(kW) (2)
1	055	2S	0,4	8 000	010	1,6	0,024	0,025		1,1	0,33
2	075	1N	1,3	3 000	010	3,8	0,08	0,12	0,254	2,2	0,41
3		1V		6 000	010	2,9				3	0,82
4		2N	2,3	3 000	010	5,5	0,12	0,16	0,304	2,7	0,72
5		2V		6 000	010	4,4				3,5	1,44
6		4N	4	3 000	010	8	0,21	0,25		3,5	1,26
7	095	2N	4,3	3 000	010	8,3	0,3	0,41	0,86	3,5	1,35
8		2V		6 000	015	7,8				5,9	2,70
9		3N	6	3 000	015	12	0,41	0,52	0,97	5,2	1,88
10		3V		6 000	025	10				10,3	3,77
11		5N	9,2	3 000	015	16	0,64	0,75		5,8	2,89
12	115	2N	7,4	3 000	015	13	0,7	1,07	2,45	5,5	2,32
13		2V		6 000	025	11				10,5	4,65
14		3K	10,5	2 000	015	18	0,97	1,34		5,3	2,20
15		3N		3 000	025	18			2,73	9,2	3,30
16		3V		6 000	025	14				12,6	6,59
17		4K	13,3	2 000	015	20	1,25	1,62		6,2	2,78
18		4N		3 000	025	21				10,1	4,18
19		6N	18,7	3 000	025	25	1,8	2,17		12	5,87
20	142	2K	12	2 000	015	17	1,59	2,54		6	2,51
21		2N		3 000	025	16			6,7	10,4	3,77
22		2R		4 250	025	15				11,5	5,34
23		3K	17	2 000	025	26	2,19	3,14		9,5	3,56
24		3N		3 000	025	21			7,3	11,7	5,34
25		4K	22	2 000	025	32	2,79	3,74	7,9	10,4	4,61

Nr.	BML								
1	075 1V	1,2	6 000	010	2,6	0,08		2,8	0,69
2	3N	2,8	3 000	010	5,1	0,15		4	0,87
3	3V		6 000	015	5,3			5,8	1,75

Motor nicht verfügbar

⁽¹⁾Die Werte für Drehmoment und Strom gelten bei einer Versorgungsspannung von Un -10 % und für eine Erwärmung des Gehäuses von 100 K. Bei einer auf 60 K begrenzten Erwärmung sind diese Werte mit 0,77 zu multiplizieren.


Werte für Drehmoment: theoretische Toleranz ± 10 %; typische Toleranz ± 5 %.

Wenn der Motor auf einem thermisch isolierenden Träger montiert ist, sind die Werte für Drehmoment um weitere 10% zu reduzieren.

⁽²⁾ Numerischer Wert zur vereinfachten Dimensionierung des Spindelverstärkers.

Spindelmotoren AMS Kenndaten

Kenndaten Leistung-Drehzahl und Drehmoment-Drehzahl der Motoren AMS

 \mathbf{P}_{n} = Nennleistung [kW]

P_{max} = Überlastleistung [kW]

 \mathbf{P}_{m} = Leistung bei Höchstdrehzahl [kW]

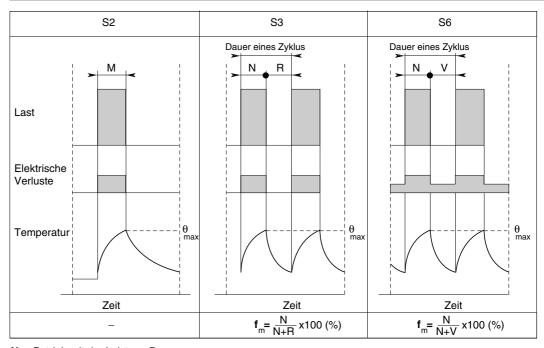
 $\omega_{n}^{}$ = Basisdrehzahl [min⁻¹]

 \mathbf{C}_{n} = Nennmoment zwischen ω =0 und ω_{n} [Nm]

 \mathbf{C}_{max} = Überlastmoment zwischen ω =0 und ω_{n} [Nm]

 $\omega_{\rm s}^{\rm ineq}$ = Höchstdrehzahl für Betrieb mit konstanter Leistung in Betriebsart **S6** [min-1]

 $\begin{array}{ll} \boldsymbol{\omega_g} &= \text{H\"ochstdrehzahl f\"ur Betrieb mit konstanter Leistung in Betriebsart S1 [min-1]} \\ \boldsymbol{C_g} &= \text{Moment bei Drehzahl } \boldsymbol{\omega_g} \text{ [Nm]} \end{array}$


 ω_{lim}^{-} = Höchstdrehzahl [min-1]

 $\mathbf{C}_{\mathsf{m}}^{}$ = Moment bei Höchstdrehzahl [Nm]

 $\mathbf{I}_{\mathrm{cont}} = \mathrm{Nennstrom} \ \mathrm{der} \ \mathrm{Kombination} \ \mathrm{Motor-Antriebs verst\"{a}rker} \ [\mathrm{Aeff}]$

 I_{ms} = Überlaststrom der Kombination Motor-Antriebsverstärker [Aeff]

Betriebsarten

N = Betrieb mit der Leistung P_{max}

R = Ruhestellung

V = Leerlauf

 f_m = Betriebsfaktor

Zuordnung der Spindelmotoren AMS zu den Monoblockantriebsverstärkern MBLD und MDLS

	Moto	r	An- steue- rung	Antrieb- verstärker MBLD			[Dauerbe	trieb				Überla	Ū	
			9	MDLS	Pn	ωn	ωg	ωlim	Pm	Cn	Icont	Pmax	Cmax	Ims	10 mn
Nr.	AMS				(kW)	(min ⁻¹)	(min ⁻¹)	(min ⁻¹)	(kW)	(Nm)	(Aeff)	(kW)	(Nm)	(Aeff)	(%)
1	100	SB	Υ	050	3,7	1 500	6 500	6 500	3,7	24	21	6	40	35	30
2		МВ	Υ	050	5,5				5,5	35	26	7,5	47	35	
3		GB	Υ	075	9				9	57	39	12,5	80	53	
4		SD	Υ	050	3,7	1 500	6 500	12 000	1,8	24	21	6	40	35	30
5		MD	Υ	050	5,5				2,8	35	26	7,5	47	35	
6		GD	Y	075	9	1 500	8 200		6,2	57	39	12,5	80	53	
7	132	SA	Υ	050	5	750	6 000	7 000	2,8	64	26	7,5	95	35	37
8		sc	Υ	075	10	1 500	6 000		8	64	39	14	89	53	37
9		SE	Δ	100	15	1 750	4 000		10	82	52	23	110	71	30
10		MA	Υ	075	7,5	750	6 000		5,7	95	39	10	127	53	37
11		МС	Υ	100	15	1 500	6 000		12,5	95	52	21	134	71	37
12	l .	ME	Δ	150	19,5	1 850	5 500		19	100	72	35	149	106	30
13		LA	Υ	100	11	750	6 000		9	140	52	15	191	71	37
14		LE	Υ	150	22	1 250	4 200		15	168	72	36	229	106	30
15		SF	Υ	050	5	750	6 000	10 000	2	64	26	7,5	95	35	37
16		SG	Υ	075	10	1 500	6 000		6	64	39	14	89	53	37
17		SH	Δ	100	15	1 750	4 000		7,5	82	52	23	110	71	30
18		MF	Υ	075	7,5	750	6 000		4	95	39	10	127	53	37
19		MG	Υ	100	15	1 500	6 000		9	95	52	21	134	71	37
20	l .	МН	Δ	150	19,5	1 850	5 500		13,5	100	72	35	149	106	30
21		LF	Υ	100	11	750	6 000	9 000	7	140	52	15	191	71	37
22		LI	Υ	075	12,5	680	2 300		3	175	39	16,8	236	53	30
23		LH	Υ	150	22	1 250	4 200		12	168	72	36	229	106	30
24	160	MA	Υ	100	18	650	1 300	8 500	2,7	264	52	24,2	355	71	35
25			Δ			1 300	2 600		5,4	132			178		
26		МВ	Υ	150	26	1 200	2 400		7,3	208	72	36,4	290	106	
27			Δ			2 400	4 800		14,5	104			145		
28		МС	Δ	200	36	1 700	2 800		11,8	202	100	47	300	141	
29		LA	Υ	100	18	500	1 000	6 500	2,8	344	52	24,2	463	71	
30			Δ			1 000	2 000		5,6	172			231		
31		LB	Υ	150	26	950	1 900		7,6	260	72	36,4	364	106	
32			Δ			1 900	3 800		15,2	130			182		
33		LC	Δ	200	36	1 050	2 100		11,6	328	100	48	437	141	

Die o.a. Werte für Strom und Drehmoment verstehen sich für eine maximale Umgebungstemperatur von 40°C und für eine maximale Erwärmung des Gehäuses von 100 K.

Die Motoren mit Umschaltung der elektrischen Kopplung können dynamisch umgeschaltet werden.

Zuordnung der Spindelmotoren IM 18M und AMR zu den Monoblockantriebsverstärkern MBLD und MDLS Zuordnung des Spindelmotors IM 18M 214 zu dem Antriebsverstärker UAC

Zuordnung der Spindelmotoren IM 18M und AMR zu den Monoblockantriebsverstärkern MBLD und MDLS

		An-	Antrieb-			[Dauerbet	trieb				Überla	stung	
	Motor	steue-	verstärker MBLD/MDLS				S1					S	6	
		rung	(1)	Pn	ωn	ωg	ωlim	Pm	Cn	Icont	Pmax	Cmax	Ims	10 mn
Nr.				(kW)	(min ⁻¹)	(min ⁻¹)	(min ⁻¹)	(kW)	(Nm)	(Aeff)	(kW)	(Nm)	(Aeff)	(%)
34	IM 18M 214	Υ	150	26	500	1 000	7 000	3,7	500	72	36,4	700	106	35
35	(1)	Δ			1 000	2 000		7,4	250			350		
36		Δ	200	36	950	1 900		9,8	362	100	50,4	506	141	
37		ΔΔ			1 900	3 800		19,6	181			253		
38	AMR 250 HA	Υ	200	30	843	2 300	10 000	6,7	340	100	37	440	141	50
39	(2)	Δ		(2)	1 900	6 300		18	151			186		

⁽¹⁾ Wenn der Motor IM 18M mit einem Geber Q ausgerüstet werden soll, bitte bei uns anfragen.

(2) Diese Leistungen erhält man durch Ändern der elektrischen Ansteuerung und der doppelten Kühlung (Luft und Wasser) gemäß nachstehenden Angaben.

Typ des Kühlmediums	Durchsatz	Maximaler Temperaturunterschied zwischen Eingang und Ausgang des Kühlmediums	Druck
Wasser	6 (I/min)	15 °C	0,5 Bar (1)
Luft	33 (l/s)	50 °C	5 Bar (2)

⁽¹⁾ Wassertemperatur am Eingang: 20 °C.

Das Ändern der Ansteuerung kann dynamisch oder bei einer Drehzahl unter 2100 min⁻¹ erfolgen Wenn ein Antriebsverstärker UAC verwendet wird, muss dieser unbedingt mit einer Relaiskarte (G14 oder G15) ausgerüstet werden.

Die o. a. Werte für Strom und Drehmoment gelten für eine Umgebungstemperatur von maximal 40°C und für eineErwärmung des Gehäuses von maximal 100 K.

Drehmomentwerte: theoretische Toleranz \pm 10 %, typische Toleranz \pm 5 %.

Zuordnung des Spindelmotors IM 18M 214 zu dem Antriebsverstärker UAC

Alte Bezeichnung des Motors: IM 180 2Y 4814.

		An- Antrieb- steue- verstärker				[Dauerbe	trieb				Überla	stung	
	Motor	or steue- verstärker					S1					S	6	
		rung	UAC	Pn	ωn	ωg	ωlim	Pm	Cn	Icont	Pmax	Cmax	Ims	10 mn
Nr.				(kW)	(min ⁻¹)	(min-1)	(min-1)	(kW)	(Nm)	(Aeff)	(kW)	(Nm)	(Aeff)	(%)
40	IM 18M 214	YY	300	55	1 050	2 100	7 000	16,5	500	141	76	690	212	35

Die o.a. Werte für Strom und Drehmoment verstehen sich für eine maximale Umgebungstemperatur von 40°C und für eine maximale Erwärmung des Gehäuses von 100 K.

 $^{(2) \,} Eingangsluft \, getrocknet \, und \, auf \, 30 \, Mikrometer \, gefiltert.$

Zuordnung der Spindelmotoren AMS zu den modularen Antriebsverstärkern MDLU

			An-	Antrieb-			I	Dauerbet	rieb				Überla	stung	
	Moto	or	steue-	verstärker				S1					S	6	
			rung	MDLU	Pn	ωn	ωg	ωlim	Pm	Cn	Icont	Pmax	Cmax	Ims	10 mn
Nr.	AMS				(kW)	(min-1)	(min-1)	(min-1)	(kW)	(Nm)	(Aeff)	(kW)	(Nm)	(Aeff)	(%)
1	100	SB	Υ	034	2,2	1 500	6 500	6 500	2,2	14	14	4	27	24	23
2			Υ	050	3,7				3,7	24	20	6	40	35	22
3		MB	Y	075	5,5				5,5	35	26	10	80	53	13
4		GB	Υ	100	9				9	57	39	17	120	71	16
5		SD	Υ	034	2,2	1 500	6 500	12 000	1,1	14	14	4	27	24	23
6			Υ	050	3,7				1,8	24	20	6	40	35	22
7		MD	Υ	075	5,5				2,8	35	26	10	80	53	13
8		GD	Υ	100	9	1 500	8 200		6,2	57	39	17	120	71	16
9	132	SA	Υ	075	5	750	6 000	7 000	2,8	64	26	10	150	53	16
10		sc	Υ	100	10	1 500	6 000		8	64	39	19	122	71	20
11		SE	Δ	150	15	1 750	4 000		10	82	52	29	160	106	13
12		MA	Υ	100	7,5	750	6 000		5,7	95	39	15	190	71	20
13		MC	Υ	150	15	1 500	6 000		12,5	95	52	30	190	106	16
14		LA	Υ	150	11	750	6 000		9	140	52	23	292	106	16
15		SF	Υ	075	5	750	6 000	10 000	2	64	26	10	150	53	16
16		SG	Υ	100	10	1 500	6 000		6	64	39	19	122	71	20
17		SH	Δ	150	15	1 750	4 000		7,5	82	52	29	160	106	13
18		MF	Υ	100	7,5	750	6 000		4	95	39	15	190	71	20
19		MG	Υ	150	15	1 500	6 000		9	95	52	30	190	106	16
20		LF	Υ	150	11	750	6 000	9 000	7	140	52	23	292	106	16
21		LI	Υ	100	12,5	680	2 300		3	175	39	19	270	71	16
22	160	MA	Υ	150	18	650	1 300	8 500	2,7	264	52	29	570	106	15
23			Δ			1 300	2 600		5,4	132			255		
24		LA	Υ	150	18	500	1 000	6 500	2,8	344	52	27	740	106	15
25			Δ			1 000	2 000		5,6	172			400		

Die o.a. Werte für Strom und Drehmoment verstehen sich für eine maximale Umgebungstemperatur von 40°C und für eine maximale Erwärmung des Gehäuses von 100 K.

Die Motoren mit Umschaltung der elektrischen Kopplung können dynamisch umgeschaltet werden.

Zuordnung der Motorspindle MSA zu den Monoblockantriebsverstärkern MDLS

			An-	Antrieb-			[Dauerbet	trieb				Überla	astung	
	Moto	r	steue-	verstärker				S1					S	6	
			rung	MDLS	Pn	ωn	ωg	ωlim	Pm	Cn	Icont	Pmax	Cmax	Ims	10 mn.
Nr.	MSA				(kW)	(min-1)	(min-1)	(min-1)	(kW)	(Nm)	(Aeff)	(kW)	(Nm)	(Aeff)	(%)
1	184	DA (1)	Υ	050	6,5	2 000	4 000	10 000	2,6	31	26	8,7	42	35	25
2			Δ			4 000	8 000		5,2	15,5			21		
3		HB (1)	Υ	100	15	2 000	4 000	12 000	5	72	52	20	95	71	25
4			Δ			4 000	8 400		10	36			48		
5	220	DA	Υ	050	7,5	1 000	2 000	10 000	1,6	72	26	10	96	35	25
6			Δ			2 000	4 400		3,3	36			48		
7		DB	Υ	100	14	1 400	2 600		3,5	96	46	18	123	62	25
8			Δ			2 600	6 000		7	51			66		
9	240	DA	Υ	100	13,5	1 200	2 200	10 000	3	107	46	17,5	139	62	25
10			Δ			2 200	6 000		7	59			76		
11		НА	Υ	100	13,5	850	1 500		2	152	46	18	240	71	19
12			Δ			1 500	4 000		4,5	86			145		
13		НВ	Υ	150	20	1 300	2 000		4	147	65	27	198	95	25
14			Δ			2 000	5 200		10	96			129		
15		нс	Υ	200	30	2 000	3 800		11	144	100	41	196	141	25
16			Δ			3 800	10 000		30	72			103		
17	285	DA	Υ	150	20	765	1 500	6 000	5	250	72	27	337	106	25
18			Δ			1 500	5 000		17	127			172		
19	320	DA	Υ	150	20	425	1 050		4	450	72	27	610	106	25
20			Δ			1050	4 500		13	182			246		
21			Υ	200	20	425	800		4	450	75	27	760	120	20
22			Δ			800	4 500		13	238			322		

⁽¹⁾ Motorspindle MSA 184 DA und HB: Die angegebenen Kenndaten wurden mit dem doppelten Kühlsystem (Flüssigkeitskühlung des Stators und Luftkühlung des Rotors) erhalten.

Die o.a. Werte für Strom und Drehmoment verstehen sich für eine maximale Umgebungstemperatur von 40°C und für eine maximale Erwärmung des Gehäuses von 100 K.

Die Motoren mit Umschaltung der elektrischen Kopplung können dynamisch umgeschaltet werden.

Die o.a. Leistungen wurden entsprechend den Vorschriften für Kühlung von NUM erreicht (siehe Katalog Motorspindle 738x012).

Zuordnung der Motorspindle MSS und MSA zu den modularen Antriebsverstärkern MDLU

Zuordnung der Motorspindle MSS zu den modularen Antriebsverstärkern MDLU

			An-	Antrieb-				Dauerbet	trieb				Überla	stung	
	Moto	or	steue-					S1					S	6	
			rung	MDLU	Pn	ωn	ωg	ωlim	Pm	Cn	Icont	Pmax	Cmax	Ims	10 mn
Nr.	MSS				(kW)	(min ⁻¹)	(min-1)	(min-1)	(kW)	(Nm)	(Aeff)	(kW)	(Nm)	(Aeff)	(%)
1	135	DA	Υ	075	3,7	1 500	4 500	8 000	3,5	24	24	6,6	42	53	11
2		DB (1)	Υ	100	15	5 000	10 000	10 000	15	30	45	20	42	71	25

⁽¹⁾ Motorspindle MSS 135 DB: Es muss eine Drossel AGOREA001 in Reihe mit dem Stator geschaltet werden.

Die o.a. Werte für Strom und Drehmoment verstehen sich für eine maximale Umgebungstemperatur von 40°C und für eine maximale Erwärmung des Gehäuses von 100 K.

Die o.a. Leistungen wurden entsprechend den Vorschriften für Kühlung von NUM erreicht (siehe Katalog Motorspindle 738x012).

Drehmomentwerte: theoretische Toleranz \pm 10 %, typische Toleranz \pm 5 %.

Zuordnung der Motorspindle MSA zu den modularen Antriebsverstärkern MDLU

			An-	Antrieb-			[Dauerbet	rieb				Überla	stung	
	Moto	or	steue-	verstärker				S1					S	6	
			rung	MDLU	Pn	ωn	ωg	ωlim	Pm	Cn	Icont	Pmax	Cmax	Ims	10 mn
Nr.	MSA				(kW)	(min ⁻¹)	(min ⁻¹)	(min ⁻¹)	(kW)	(Nm)	(Aeff)	(kW)	(Nm)	(Aeff)	(%)
3	184	DA (1)	Υ	075	6,5	2 000	4 000	10 000	2,6	31	26	12	65	53	11
4			Δ			4 000	8 000		5,2	15,5			35		
5		НА	Υ	100	7,5	1 000	5 750		4,3	72	45	10	95	71	25
6		HB (1)	Υ	150	15	2 000	4 000	12 000	5	72	52	26	143	106	11
7			Δ			4 000	8 400		10	36			84		
8	220	DA	Υ	075	7,5	1 000	2 000	10 000	1,6	72	26	11	150	53	11
9			Δ			2 000	4 400		3,3	36			70		
10		DB	Υ	100	14	1 400	2 600		3,5	96	45	18	140	71	19
11			Δ			2 600	6 000		7	51			86		
12	240	DA	Υ	100	13,5	1 200	2 200	10 000	3	107	45	19	180	71	19
13			Δ			2 200	6 000		7	59			100		
14		НА	Υ	100	13,5	850	1 500		2	152	45	18	240	71	19
15			Δ			1 500	4 000		4,5	86			145		
16		НВ	Υ	150	20	1 300	2 000		4	147	60	27	250	106	20
17			Δ			2 000	5 200		10	96			150		

⁽¹⁾ Motorspindle MSA 184 DA und HB: Die angegebenen Kenndaten wurden mit dem doppelten Kühlsystem (Flüssigkeitskühlung des Stators und Luftkühlung des Rotors) erhalten.

Die o.a. Werte für Strom und Drehmoment verstehen sich für eine maximale Umgebungstemperatur von 40°C und für eine maximale Erwärmung des Gehäuses von 100 K.

Die Motoren mit Umschaltung der elektrischen Kopplung können dynamisch umgeschaltet werden.

Die o.a. Leistungen wurden entsprechend den Vorschriften für Kühlung von NUM erreicht (siehe Katalog Motorspindle 738x012).

Zuordnung der Motorspindle MSA zu den Monoblockantriebsverstärkern MBLD

Zuordnung der Motorspindle MSA zu den Antriebsverstärkern MBLD

			An-	Antrieb-			[Dauerbet	trieb				Überla	stung	
	Moto	or	steue-	verstärker				S1					S	6	
			rung	MBLD	Pn	ωn	ωg	ωlim	Pm	Cn	Icont	Pmax	Cmax	Ims	10 mn
Nr.	MSA				(kW)	(min-1)	(min-1)	(min-1)	(kW)	(Nm)	(Aeff)	(kW)	(Nm)	(Aeff)	(%)
1	184	DA (1)	Υ	050	6,5	2 000	4 000	10 000	2,6	31	26	8,7	42	35	25
2			Δ			4 000	8 000		5,2	15,5			21		
3		HB (1)	Υ	100	15	2 000	4 000	12 000	5	72	52	20	95	71	25
4			Δ			4 000	8 400		10	36			48		
5	220	DA	Υ	050	7,5	1 000	2 000	10 000	1,6	72	26	10	96	35	25
6			Δ			2 000	4 400		3,3	36			48		
7		DB	Υ	100	14	1 400	2 600		3,5	96	46	18	140	71	19
8			Δ			2 600	6 000		7	51			86		
9	240	DA	Υ	100	13,5	1 200	2 200	10 000	3	107	46	19	180	71	19
10			Δ			2 200	6 000		7	59			100		
11		НА	Υ	100	13,5	850	1 500		2	152	46	18	240	71	19
12			Δ			1 500	4 000		4,5	86			145		
13		НВ	Υ	150	20	1 300	2 000		4	147	65	27	250	106	20
14			Δ			2 000	5 200		10	96			150		
15		НС	Υ	200	30	2 000	3 800		11	144	100	41	196	141	25
16			Δ			3 800	10 000		30	72			103		
17	285	DA	Υ	150	20	765	1 500	6 000	5	250	72	27	337	106	25
18			Δ			1 500	5 000		17	127			172		
19	320	DA	Υ	150	20	450	1 050		4	450	72	27	610	106	25
20			Δ			1050	4 500		13	182			246		
21			Υ	200	20	425	800		4	450	75	27	760	120	20
22			Δ			800	4 500		13	238			322		

⁽¹⁾ Motorspindle MSA 184 DA und HB: Die angegebenen Kenndaten wurden mit dem doppelten Kühlsystem (Flüssigkeitskühlung des Stators und Luftkühlung des Rotors) erhalten.

Die o.a. Werte für Strom und Drehmoment verstehen sich für eine maximale Umgebungstemperatur von 40°C und für eine maximale Erwärmung des Gehäuses von 100 K.

Die Motoren mit Umschaltung der elektrischen Ansteuerung können dynamisch umgeschaltet werden.

Die o.a. Leistungen wurden entsprechend den Vorschriften für Kühlung von NUM erreicht (siehe Katalog Motorspindle 738x012).

റ്റ

Allgemeine Informationen

Inhaltsverzeichnis

Index	8/2
Num weltweit	8/4
Regelung	8/6

Allgemeine Informationen

Inhaltsverzeichnis

A	F
Achs- und Spindelmotoren 1/3, 1/5, 5/1, 7/1 Achsen	Fehlermeldungen der Maschine - CNC-Meldungen 4/24
Achsabgleich 2/12, 4/6 Achsanschlussmodul 2/11, 3/12	Filter gegen elektromagnetische Störungen 6/19, 6/26, 6/27
Achsantriebsverstärker 1/3, 1/6, 1/7, 6/1, 7/1	Fipway 1/5, 2/25, 4/29
Achsfunktionen 2/12, 4/5-4-7	Fräsen 2/5, 2/16
CNC-Achsen, SPS-Achsen 1/5, 2/11, 4/5	Funktion N/M Auto 4/15
Duplizierte und synchronisierte Achsen 2/12, 4/6	
Messeingänge 1/5, 2/3, 2/11	G
Multigruppenfunktion 1/5, 2/3, 2/12, 4/6 Positionierachsen und interpolierte	Geber für Achs- und Spindelmotoren 7/3 Grafik, 2D und 3D 4/23
Achsen 2/12, 4/5	Н
Schräge Achsen 2/12, 4/7	Handbücher, technische 2/29-2/30
Achserweiterungsgehäuse (Modax) 2/6, 3/4	Handräder 1/5, 2/3, 2/10-2/11
Achsgruppen 1/5, 2/3, 2/12, 4/6	Hochgeschwindigkeitsbearbeitung 4/15
AMS/IM/AMR 5/14, 7/8	Holzbearbeitung 2/5, 2/22
Ansteuerungen, analoge und digitale 1/3, 1/5, 4/4 Antriebsverstärker	
Zuordnungen Motoren-Antriebsverstärker 7/1	
Kabel Num 1050/Antriebsverstärker	Induktanzen 6/17, 6/27
DISC NT 2/11	Integration der Systeme 1/3, 2/26-2/28, 4/26
Ausbohren (Funktion) 2/2, 2/16, 2/22	Inter-Coprozessor 2/26, 4/29
Adobotici (Falikacii) Ziz, Zi io, Zizz	Interpolation
В	5 bis 9 Achsen 2/12, 4/5
Ball-bar 4/7	Linear-, Kreis-, Helixinterpolation 2/12, 4/5
Bearbeitungswerkzeuge 2/12, 4/12-4/13	Spline, mit 3D-Kurvenglättung, NURBS 2/12, 4/
Bedieneroberfläche 4/18	K
Bedienfelder	Kabel
Bedienfeld mit CRT-Bildschirm 2/8, 3/5, 3/8, 4/18	Anschlusskabel CNC/Antriebsverstärker
Bedienfeld mit TFT-Anzeige 2/8, 3/5-3/6, 4/18	DISC NT 2/11
Bedienfeld Num Mplus, Num Tplus 3/10, 4/19	Anschlusskabel CNC/Bedienfelder 2/9
CNC-Kompaktbedienfelder 2/8, 3/5, 3/9, 4/18	Bedienfeld M <i>plus</i> und T <i>plus</i> , versetzte
Konfiguration mit mehreren Bedienfeldern, mit meh-	E/A-Module 2/10, 3/13
reren CNC 2/8, 3/11	Glasfaserkabel für Maschinenbedienfeld
Maschinenbedienfeld MP01 2/10, 3/5, 3/9, 3/13,	2/10, 3/7
4/18 Masshiranhadianfold MD02 - 2/10 - 2/5 - 2/7 - 2/12	Kabel für Achs- und Spindelmotoren 5/24-5/27
Maschinenbedienfeld MP02 2/10, 3/5, 3/7, 3/13, 4/18	Kanäle 1/5, 2/3, 2/12, 4/6
PC-Bedienfeld FTP41 2/9, 3/5-3/6, 4/19	Kombinierte Maschine (Fräsen + Drehen) 2/12,
Tragbares Bedienfeld (POP) 2/9, 3/5-3/6, 4/19	4/15
Bildschirmanwahl 4/27	Kommunikation 1/5, 2/26, 4/29
BHL, BML, BPG, BPH 5/5, 7/4	Korrektur Anti-Pitch 2/12
Bremswiderstand 6/5, 6/13, 6/15, 6/20	1
	Landessprachen der Betriebssysteme 2/9
C	Look-Ahead 2/12, 4/4
C-Sprache 2/13, 2/27, 4/10, 4/27-4/28	Losekompensation 4/7
D	Losekompensation 4/1
D	M
Dienstprogramme, residente 4/27	Maschinenbedienfeld MP01 2/10, 3/5, 3/9, 3/13,
DISC NT (Num Power 1050) 1/3, 1/5, 1/7, 2/3, 2/6	4/18
Diskettenlaufwerk 2/25	Maschinenbedienfeld MP02 2/10, 3/5, 3/7, 3/13,
Dokumentation, technische 2/28-2/30	4/18
Drehen 2/2-2/3, 2/14 Dynamische Operatoren 2/26, 4/27	Makrobefehle, residente 4/20
bynamisone Operatorem 2/20, 4/21	Massstabsfaktor (Scaling) 4/22
E	MBLD 6/14
Edit Part Program 4/28	MDLA 6/3
Ein-/Ausgänge 1/5, 2/13, 3/12-3/13, 4/11	MDLS 6/14
	MDLU 6/3
	Messung 4/7, 4/17
	Messwerterfassung 4/17
	MMITool 2/27-2/28, 4/28
	MNDA 1/3, 1/5, 1/7, 6/1, 7/1

Allgemeine Informationen

Inhaltsverzeichnis

N Notrückzug 4/17 NUMBackUp 2/27-2/28, 4/28 Num M <i>plus</i> , Num T <i>plus</i>					
Basis-CNC, Bedienfeld und Tastatur 2/7, 2/10, 3/10 Erweiterungen und Sollwert 1/3, 1/5, 2/2-2/3 Funktionen, Betriebsart 2/24-2/25, 4/25					
Num Power 1020 und 1040 Basis-CNC 2/6, 2/11, 3/2 Erweiterungen und Sollwert 1/3, 1/5, 2/2-2/3 Num Power 1050 Basis-CNC 2/6, 2/11, 3/3					
Erweiterungen und Sollwert 1/3, 1/5, 2/2-2/3 Konfiguration Drehen 2/14 Konfiguration Fräsen 2/16 Num Power 1060 und 1080					
Basis-CNC 2/6, 2/11, 3/4 Erweiterungen und Sollwert 1/3, 1/5, 2/2-2/3					
P Parameter 4/22 PC 1/3, 1/5, 2/9, 2/27-2/28, 3/5-3/6, 4/19, 4/26 PC-Qwerty-Tastatur 3/7, 4/19 PCToolKit 2/27-2/28, 4/27-4/28					
Personalisierbare Baureihe (GP) 2/19 PERSOTool 2/27-2/28, 4/28 PLCTool 2/27-2/28, 4/28 Präzision, parametrierbare 2/12, 4/7					
PROCAM 2/5, 2/15, 2/17, 2/26, 4/24, 4/27 PROFIL 4/23 Programmierung der SPS 2/13, 4/10 parametrierte, stukturierte 4/22					
Teileprogrammierung 4/20-4/24 Programmunterbrechung 4/17 Progressive Beschleunigung, 2/12, 4/4					
R RAM-Speicher MMI					
S Schiefe Ebene 4/14 Schleifen 2/20-2/21					
Serielle Verbindungen 1/5, 2/25, 4/29 Servomotoren 1/3, 1/5, 5/1, 7/1 SETTool 2/27-2-28, 4/28 Spindeln					
C-Achse 4/9 Spindelmotoren 1/3, 1/5, 5/1, 7/1 Spindelantriebsverstärker 1/3, 1/6, 1/7, 6/1, 7/1 Spindelsteuerung, Funktionen 1/5, 2/3, 2/11, 2/12, 4-8-4/9					
SPS Datentransfer von der CNC an die SPS 4/10 Programmierung 2/13, 4/10 Speicher 2/4-2/5, 4/10					
SPS-Achsen 2/11, 4/5 SPS-Ein-/Ausgänge 1/5, 2/13, 3/12-3/13, 4/11 Stecker für Achs- und Spindelmotoren 5/22-23					

Т

Tastatur KBD30 (siehe Bedienfeld FS20) Tastatur KBD-PC (siehe PC-Bedienfeld FTP41)

l

Uni-Telway 1/5, 2/25, 4/29 Unterprogramme 4/22

W

Werkstattorientierte Steuerungen (siehe Num M*plus*, Num T*plus*) Werkzeuge 2/15, 4/1, 4/12-4/13 Werkzeugkorrektur 2/12, 4/12

Z

Zuordnung Motoren-Antriebsverstärker 1/7, 7/1 Zurückfahren auf der Kontur 4/17 Zyklen Drehzyklus 4/16

Fräszyklus 4/14
Personalisiert 4/16

Allgemeine Informationen

NUM weltweit, Regelung

NUM Adressen weltweit

Land	Adresse	Telefon	Fax - Email
Vertrieb ur	nd Service		
Algerien	R. M. O. (AGENT) Sté de Reconstruction de Machine Outils et Maintenance Industrielle 16, rue Guy de Maupassant Les Sources - BIR-MOURAD- RAIS DZ - 16400 ALGER	+213 2 54 24 14	+213 2 54 24 14 rmoacn@yahoo.fr
Algerien	Sarl TEDI 15 rue du Capitaine Azziouz Mouzaoui Côte Rouge - Hussein Dey DZ-16008 ALGER	+213 21 77 21 40	+213 21 77 87 45 oy@teditec.com
Brasilien	LOSUNG Technical Assistance and Comerce Itda. Alameda Tocantins, 280 BR - 06455-020 BARUERI - SP	+55 11 419 13 714	+55 11 419 58 210 losung@uol.com.br
Deutschland	d NUM GmbH Lünenerstrasse 211/212 D-59174 Kamen	+49 2307 26018-0	+49 2307 26018-79 service.de@num.com
Deutschland	d NUM GmbH Servicestelle Waidhaus Fabrikstrasse 7 92726 Waidhaus	+49 7023 7440-0	+49 7023 7440-10 reinhold.kraus@num.com
Finnland	NUCOS OY Keiserinviitta 16 FIN-33960 Pirkkala Tampere	+358 3 342 7100	+358 3 342 7130 oiva.viitanen@nucos.fi
Italien	Num SpA Sede Legale Via F Somma 62 I -20012 Cuggiono (MI)	+39 02 97 969 350	+39 02 97 969 351 service.it@num.com
Schweden	ConRoCo AB Formvägen 1 777 93 Söderbärke	+46 240 65 01 16	+46 240 65 01 21 info@conroco.com
Taiwan	NUMAGE CONTROL Ltd. No. 27, Wen Shin South 1st Road Nantun District Taichung 40855, TAIWAN R.O.C.	+886 4247 50459	+886 4247 19255 sales.tw@num.com
Turkei	NUM Servis Turkiye Feyzullah Caddesi Kirli APT B Blok No: 17/4 TR - 81513 Maltepe-Istanbul	+90 542 265 80 54	+90 542 265 80 54 numserviceturkiye@yahoo.com.tr

Num weltweit

Vertrieb und Kundendienst					
Land	Adresse	Telefon	Fax-Email		
Algerien	Schneider Electric - Algier R.M.O - Alger	+213 2 69 80 03 +213 21 54 38 62	+213 2 69 80 02 +213 21 54 24 14		
Belgien Luxemburg	Schneider MGTE NV-SA - Brüssel Schulungszentrum Technifutur - Lüttich	+32 2 373 77 72	+32 2 375 1391 cgoosens@schneider.be		
Finnland	Nucos OY - Pirkkala (Tampere)	+358 3 342 7100	+358 3 342 7130		
Indien	Schneider Electric India - Neu-Delhi	+91 116 25 76 58	+91 116 25 80 80 nitin_bhamre@mail.schneider.fr		
Norwegen	TecniCut	+47 70 15 27 20	+47 70 15 27 21 sales@technicut.no		
Südafrika	Machine Tool Technologies - Jeppestown	+27 11 614 65 31	+27 11 614 25 15		
Polen	Schneider Electric Polska - Warschau	+48 22 511 83 81	+48 22 511 82 03		
Taiwan	NUMAGE Control Ltd - Taichung	+886 4 475 0459/7460	+886 4 471 9255 numtwn@netvigator.com.tw		
Tcheschien	Schneider Electric AS - Pisek	+420 362 766 147	+420 362 219 446		
Türkei	Schneider Electrik AS - Istanbul	+90 216 306 60 82 hasan_og	+90 216 306 07 36 gusay@tr.schneider-electric.com		

Regelung

Einhaltung der EG-Richtlinien für elektromagnetische Verträglichkeit (89/336, 92/31 und 93/68) und für Niederspannung (73/23 und 95/68)

Die Liste der Normen, denen die CNC-Steuerungen und die Antriebsverstärker von Num gerecht werden, ist in den Konformitätsbescheinigungen angegeben, deren Kopie auf Anfrage verfügbar ist.

Die Anwendung der Produkte aus diesem Katalog muss entsprechend den in unserer Installations- und Verkabelungsanleitung (auf der CD der Basis-Dokumentation oder 938 960), angegebenen Empfehlungen erfolgen.

Die Produkte in diesem Katalog sind für die Integration in eine Maschine entsprechend der EG-Maschinenrichtlinie 98/392 vorgesehen.

Modalitäten für den Export der CNC-Steuerungen

1. - Je nach deren technischen Daten oder in bestimmten Anwendungsfällen können einige Produkte von Num der französischen oder europäischen Gesetzgebung sowie der amerikanischen Gesetzgebung über die Endbestimmung unterliegen.

Diesbezügliche Informationen finden Sie auf unseren Auftragsbestätigungen, Rechnungen und Lieferscheinen.

Diese Disposition gilt insbesondere für Produkte, die als solche auf unseren Auftragsbestätigungen, Rechnungen und Lieferscheinen gekennzeichnet sind.

Folglich verpflichtet sich der Käufer, die Gesetzgebung seines Landes und gegebenenfalls die europäische oder amerikanische Gesetzgebung bezüglich der Kontrolle der Endbestimmung der Güter für Doppelverwendung in allen Punkten einzuhalten.

- 2. Der Käufer verpflichtet sich, Kontrollverfahren innerhalb seines Unternehmens einzurichten und anzuwenden, um beim Wiederverkauf der betreffenden Produkte die Einhaltung der Prinzipien dieser Gesetzgebung zu wahren.
- 3. Im allgemeinen werden die von Num entgegengenommenen Aufträge unter der Voraussetzung akzeptiert, dass Num gegebenenfalls die erforderlichen Genehmigungen erhält.

© Copyright Num SA 2002

Jegliche Wiedergabe dieser Unterlage ist untersagt. Jegliche Kopie oder Wiedergabe dieser Unterlage, auch teilweise, durch jegliche Verfahren (fotografisch, Magnetaufzeichnungen oder andere), sowohl jegliches vollständige oder teilweises Abschreiben auf elektronischen Maschinen ist untersagt.

Die in diesem Dokument genannte Software ist Eigentum der Num SA. Der Kauf eines registrierten Exemplars dieser Software verleiht dem Käufer eine nicht exklusive Lizenz, die strikt auf die Anwendung des betreffenden Exemplars beschränkt ist. Jegliche Kopie oder Vervielfältigung dieser Software ist untersagt, ausser der Erstellung von Sicherungskopien dieser Software auf Disketten.

Die in dieser Unterlage beschriebenen Produkte, Geräte, Programme und Dienstleistungen unterliegen einer ständigen Weiterentwicklung. Somit kann deren Beschreibung des Aussehens, der Funktion und der Anwendung nicht vertraglich bindend sein.

Motorspindle und NUM DRIVE sind hinterlegte Markenzeichen der Num SA.

Fipway, Uni-TE und Uni-Telway sind hinterlegte Markenzeichen von Schneider Electric.

Windows ist ein hinterlegtes Markenzeichen von Microsoft Corporation.

